Study on the performance of modified biogas residue biomass charcoal to activate persulfate to degrade phenols
YANG Yi-fei1, YANG Tian-xue2, WU Dai-she1, PENG Xing3, LI Dong-yang2, XIA Yong-tao1, MA Zhi-fei1
1. Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, China; 2. Chinese Research Academy of Environmental Sciences, Beijing 100012, China; 3. Hunan United Kitchen Waste Treatment Co., Ltd, Changsha 410022, China
Abstract:Modified biogas residue biochar (ZBC-800) was prepared by high temperature pyrolysis + dilute hydrochloric acid modification. The efficiency of persulfate (PS) activation by ZBC-800was studied, and the effect of activator, dosage of PS and initial pH on the degradation of phenol was investigated, and it was applied on the TOC removal of coking wastewater containing phenols for a practical valuation. The results show that: ZBC-800activated PS has a significant effect on phenol removal, with a removal rate of 91.58% in 120minutes. It is found that the system relies on a non-radical pathway that produces 1O2; the efficiency of phenol removal shows a positive correlation with the dosage of ZBC-800, but high concentration of PS does inhibit the reaction; different initial pH values (4.10, 6.80, 8.40, 10.00) have no significant effect on the degradation of phenol, and the final removal efficiency ranges from 91.58% to 93.10%; in the actual treatment of phenol-containing coking wastewater, the combination of an initial pH=3, a ZBC-800 dosage of 8.94g/L and the PS system of 0.5g/L, the TOC removal rate reached 86.09%. Therefore, ZBC-800can efficiently activate PS to significantly degrade phenol, and also shows good degradation ability in actual wastewater, and has certain application prospects.
杨奕飞, 杨天学, 吴代赦, 彭星, 李东阳, 夏勇涛, 马志飞. 改性沼渣生物质炭活化过硫酸盐降解酚类性能[J]. 中国环境科学, 2022, 42(5): 2153-2160.
YANG Yi-fei, YANG Tian-xue, WU Dai-she, PENG Xing, LI Dong-yang, XIA Yong-tao, MA Zhi-fei. Study on the performance of modified biogas residue biomass charcoal to activate persulfate to degrade phenols. CHINA ENVIRONMENTAL SCIENCECE, 2022, 42(5): 2153-2160.
刘佳露,卢 伟,张凤君,等.活化过硫酸盐氧化地下水中苯酚的动力学研究 [J]. 中国环境科学, 2015,35(9):2677-2681. Liu J L, Lu W, Zhang F J, et al. Kinetic study on oxidation of phenol in groundwater by activated persulfate [J]. China Environmental Science, 2015,35(9):2677-2681.
[2]
Roostaei N, Tezel F H. Removal of phenol from aqueous solutions by adsorption [J]. Journal of Environmental Management, 2004,70(2): 157-164.
[3]
USEPA. EPA technical support document for water quality-based toxics control [R]. Washington: United States Environmental Protection Agency, 1985.
[4]
吴叔璇,韩 旭,夏 甫,等.草酸改性零价铁活化过硫酸盐降解地下水中2,4-DNT研究 [J]. 环境科学研究: 1-13[2021- 09-17]. Wu S X, Han X, Xia F, et al. Degradation of 2,4-DNT in groundwater by oxalic acid modified zero-valent iron activated persulfate [J]. Environmental Science Research: 1-13[2021-09-17].
[5]
Ma J, Li H Y, Chi L P, et al. Changes in activation energy and kinetics of heat-activated persulfate oxidation of phenol in response to changes in pH and temperature [J]. Chemosphere, 2017,189:86-93.
[6]
钟 敏,李 孟,卢 芳,等.热活化过硫酸盐联合混凝处理微乳浊液的机理 [J]. 中国环境科学, 2021,41(2):704-712. Zhong M, Li M, Lu F, et al. Mechanism of thermal-activated persulfate combined with coagulation in the treatment of microemulsion [J]. China Environmental Science, 2021,41(2):704-712.
[7]
Lin Y T, Liang C J, Chen J H. Feasibility study of ultraviolet activated persulfate oxidation of phenol [J]. Chemosphere, 2011,82(8):1168-1172.
[8]
黄丽坤,李 哲,王广智,等.紫外催化过硫酸盐深度处理垃圾焚烧厂渗滤液 [J]. 中国环境科学, 2021,41(1):161-168. Huang L K, Li Z, Wang G Z, et al. Advanced treatment of landfill leachate by ultraviolet catalytic persulfate [J]. China Environmental Science, 2021,41(1):161-168.
[9]
翟文琰,李 孟,张 倩.过硫酸盐协同光催化纳米ZnO降解盐酸四环素的影响机制 [J]. 中国环境科学, 2020,40(6):2483-2492. Zhai W Y, Li M, Zhang Q. Influence mechanism and synergistic effects of photocatalytic degradation of tetracycline hydrochloride by the combination of persulfate and nano-ZnO [J]. China Environmental Science, 2020,40(6):2483-2492.
[10]
Aseev D G, Batoeva A A, Sizykh M R, et al. Sono-photocatalytic degradation of 4-chlorophenolin aqueous solutions [J]. Russian Journal of Physical Chemistry A, 2018,92(6):1813-1819.
[11]
曹华莉,马志飞,吴 山,等.氮掺杂石墨碳包埋Fe~0复合材料的制备及活化过硫酸盐性能研究 [J]. 环境科学学报, 2020,40(3):930-939. Cao H L, Ma Z F, Wu S, et al. Preparation of Nitrogen-doped graphite carbon-embedded Fe~0 composites and their properties of activated persulfate [J]. Acta Scientiae Circumstantiate, 2020,40(3):930-939.
[12]
Chen B L, Zhou D D, Zhu L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures [J]. Environmental Science & Technology, 2008,42(14):5137-5143.
[13]
Ahmed M B, Zhou J L, Ngo H H, et al. Insight into biochar properties and its cost analysis [J]. Biomass & Bioenergy, 2016,84:76-86.
[14]
张 倩,谢陈飞洋,仇 玥,等.Fe/污泥基生物炭持久活化过硫酸盐降解酸性橙G [J]. 中国环境科学, 2019,39(9):3879-3886. Zhang Q, Xie C F Y, Qiu Y, et al. Durable degradation of orange G using persulfate activated by sludge-derived heterogeneous catalyst [J]. China Environmental Science, 2019,39(9):3879-3886.
[15]
郭明帅,王 菲,张学良,等.改性生物炭活化过硫酸盐对水中苯和氯苯的去除机制 [J]. 中国环境科学, 2020,40(12):5280-5289. Guo M S, Wang F, Zhang X L, et al. Removal mechanism of benzene and chlorobenzene in water by modified biochar activates persulfate [J]. China Environmental Science, 2020,40(12):5280-5289.
[16]
李琪瑞,许晨阳,耿增超,等.纳米生物炭的制备方法比较及其特性研究 [J]. 中国环境科学, 2020,40(7):3124-3134. Li Q R, Xu C Y, Geng Z C, et al. Preparation methods and properties of nanobiochars [J]. China Environmental Science, 2020,40(7):3124-3134.
[17]
蒙 弘.橘皮废弃物生物炭制备及其活化过硫酸盐的机理研究 [D]. 广州:广东工业大学, 2020. Meng H. Preparation of orange peel waste biochar and its activation mechanism of persulfate [D]. Guangzhou: Guangdong University of Technology, 2020.
[18]
赵景峰,段新华,郭丽娜.过硫酸盐促进的自由基反应进展 [J]. 有机化学, 2017,37(10):2498-2511. Zhao J F, Duan X H, Guo L N. Progress of persulfate catalyzed radical reaction [J]. Organic Chemistry, 2017,37(10):2498-2511.
[19]
Hussain I, Li M, Zhang Y, et al. Efficient oxidation of arsenic in aqueous solution using zero valent iron-activated persulfate process [J]. Journal of Environmental Chemical Engineering, 2017,5(4):3983-3990.
[20]
Wang X, Wang Y, Chen N, et al. Pyrite enables persulfate activation for efficient atrazine degradation [J]. Chemosphere, 2020,244:125568.
[21]
Yang Y, Banerjce G, Brudvig G W, et al. Oxidation of organic compounds in water by unactivated peroxymonosulfate [J]. Environ- mental Science and Technology, 2018,52(10):5911-5919.
[22]
Huang B, Jiang J, Huang G, et al. Sludge biochar-based catalysts for improved pollutant degradation by activating peroxymonosulfate [J]. Journal of Materials Chemistry A, 2018,6(19):8978-8985.
[23]
Cheng X, Guo H, Zhang Y, et al. Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes [J]. Water Research, 2017,113(APR.15):80-88.
[24]
Li C, Hoffman M Z. Oxidation of phenol by singlet oxygen photosensitized by the tris(2,2'-bipyridine) ruthenium(II) Ion [J]. The Journal of Physical Chemistry A, 2000,104(25):5998-6002.
[25]
Zhang T, Zhu H B, Croue J P. Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: Efficiency, stability, and mechanism [J]. Environmental Science & Technology, 2013,47(6):2784-2791.
[26]
Yin R L, Guo W Q, Wang H Z, et al. Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: Performance and mechanism [J]. Chemical Engineering Journal, 2019,357:589-599.
[27]
赖才胜,谭洪新,罗国芝,等.固相反硝化反应器对含盐水体脱氮效率的预测模型 [J]. 中国环境科学, 2011,31(1):32-37. Lai C S, Tan H X, Luo G Z, et al. Prediction model of nitrogen removal efficiency in saline water by solid phase reactor [J]. China Environmental Science, 2011,31(1):32-37.