Optimal design of groundwater pollution monitoring network under uncertainty
DONG Guang-qi1, LU Wen-xi1, FAN Yue2, PAN Zi-Dong1
1. College of New Energy and Environment, Jilin University, Changchun 130012, China; 2. Yangtze River Scientific Research Institute, Wuhan 430010, China
Abstract:When applying the simulation-optimization method, objective parameter uncertainty will usually affect the reliability of the design result of groundwater pollution monitoring network. For this problem, the study simultaneously considered the uncertainty of hydraulic conductivity and emission intensity of pollution source, applying Monte Carlo method to design the optimal monitoring wells scheme under the influence of model uncertainty. But Monte Carlo method need to invoke the simulation model many times which will cause a huge amount of calculation. To reduce the calculation load, the study proposed to use Extreme Gradient Boosting (XGBoost) method to construct the surrogate model replacing the simulation model to couple the optimization model in the optimal design of GPMN. To sufficiently improve the monitoring precision of GPMN, the optimization model applied error of spatial moment as objective function. Besides, the dynamic change of emission intensity of pollution source was also considered. Finally, we proposed a hypothetical example based on a coal gangue pile in Fushun City to verify the validity of the method. The results are demonstrated: 1.the XGBoost surrogate method can fit the input-output relationship of the simulation model to a high degree with less computation. 2.spatial moment can effectively assess the approximation degree between interpolation pollution plume of GPMN and actual pollution plume, through which the optimized monitoring network can accurately depict actual pollution plume 3.the simulation-optimization method combines Monte Carlo method can solve the problem of the design of GPMN under uncertainty. In conclusion, the paper provides a stable and reliable method for the design of GPMN.
卢文喜.地下水系统的模拟预测和优化管理 [M]. 北京:科学出版社, 1999:104-105. Lu W X. Groundwater system simulation prediction and optimization management [M]. Beijing: Science Press, 1999:104-105.
[2]
Meyer P D, Brill Jr E D. A method for locating wells in a groundwater monitoring network under conditions of uncertainty [J]. Water Resources Research, 1988,24(8):1277-1282.
[3]
Reed P, Barbara M, Albert J V. Cost-effective long-term groundwater monitoring design using a genetic algorithm and global mass interpolation [J]. Water Resources Research, 2000,36(12):3731-3741.
[4]
Wu J F, Zheng C M. Cost-effective sampling network design for contaminant plume monitoring under general hydrogeological conditions [J]. Journal of Contaminant Hydrology, 2005,77:41-65.
[5]
骆乾坤,吴剑锋,林 锦,等.地下水污染监测网多目标优化设计模型及进化求解 [J]. 水文地质工程地质, 2013,40(5):97-103. Luo Q K, Wu J F, Lin J, et al. An evolutionary-based multi-objective optimization model for groundwater monitoring network design [J]. Hydrogeology & Engineering Geology, 2013,40(5):97-103.
[6]
范 越,卢文喜,欧阳琦,等.基于Kriging替代模型的地下水污染监测井网优化设计 [J]. 中国环境科学, 2017,37(10):3800-3806. Fan Y, Lu W X, Ouyang Q, et al. Optimum design of groundwater pollution monitoring well network based on Kriging surrogate model [J]. China Environmental Science, 2017,37(10):3800-3806.
[7]
罗建男,李多强,范 越,等.某垃圾填埋场地下水质监测井网优化设计——基于模拟优化法 [J]. 中国环境科学, 2019,39(1):196-202. Luo J N, Li D Q, Fan Y, et al. Optimization of groundwater quality monitoring network at a landfill——based on simulation optimization method [J]. China Environmental Science, 2019,39(1):196-202.
[8]
邢贞相,曲睿卓,赵 莹,等.不同替代模型在地下水污染源释放历史反演中适用性研究 [J]. 东北农业大学学报, 2018,49(12):59-68. Xing Z X, Qu R Z, Zhao Y, et al. Applicability study of different surrogate models in retrieving release history of groundwater contaminant sources [J]. Journal of Northeast Agricultural University, 2018,49(12):59-68.
[9]
潘紫东,卢文喜,范 越,等.基于模拟-优化方法的地下水污染源溯源辨识 [J]. 中国环境科学,2020,40(4):1698-1705. Pan Z D, Lu W X, Fan Y, et al. Inverse identification of groundwater pollution source based on simulation-optimization approach [J]. China Environmental Science, 2020,40(4):1698-1705.
[10]
莫绍星.基于深度学习的地下水模拟高维不确定性分析和反演 [D]. 南京:南京大学, 2019. Mo SX. Towards Efficient high-dimensional uncertainty quantification and inverse analysis in groundwater modeling using deep learning [D]. Nanjing: Nanjing University, 2019.
[11]
侯泽宇,卢文喜,王 宇.基于替代模型的地下水DNAPLs污染源反演识别 [J]. 中国环境科学, 2019,39(1):188-195. Hou ZY, Lu WX, Wang Y. Surrogate-based source identification of DNAPLs-contaminated groundwater [J]. China Environmental Science, 2019,39(1):188-195.
[12]
何 龙.深入理解XGBoost:高效机器学习算法与进阶 [M]. 北京:机械工业出版社, 2020:6-8. He L. Deep understanding of XGBoost: efficient machine learning algorithms and advanced problem [M]. Beijing: China Machine Press, 2020:6-8.
[13]
陈振宇,刘金波,李 晨,等.基于LSTM与XGBoost组合模型的超短期电力负荷预测 [J]. 电网技术, 2020,44(2):614-620. Chen Z Y, Liu J B, Li C, et al. Ultra Short-term Power Load Forecasting Based on Combined LSTM-XGBoost Model [J]. Power System Technology, 2020,44(2):614-620.
[14]
赵洪山,闫西慧,王桂兰,等.应用深度自编码网络和XGBoost的风电机组发电机故障诊断 [J]. 电力系统自动化, 2019,43(1):81-86. Zhao H S, Yan X H, Wang G L, et al. Fault diagnosis of wind turbine generator based on deep autoencoder network and XGBoost [J]. Automation of Electric Power Systems, 2019,43(1):81-86.
[15]
Chen T, Guestrin C. XGBoost: a scalable tree boosting system [C]// Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. San Francisco, California, USA: Association for Computing Machinery, 2016:785–94.
[16]
GB/T 14848-2017 地下水质量标准 [S]. GB/T 14848-2017 Standard for groundwater quality [S].
[17]
Jin Y. A comprehensive survey of fitness approximation in evolutionary computation [J]. Soft Computing, 2005,9(1):3-12.
[18]
张钧博,何 川,严 健,等.基于交叉验证的XGBoost算法在岩爆烈度分级预测中的适用性探讨 [J]. 隧道建设, 2020,40(S1):247-253. Zhang J B, He C, Yan J, et al. Discussion on the applicability of XGBoost algorithm based on cross validation in prediction of rockburst intensity classification [J]. Tunnel Construction, 2020,40 (S1):247-253.
[19]
Fan Y, Lu W X. Optimal design of groundwater pollution monitoring network based on the SVR surrogate model under uncertainty [J]. Environmental Science and Pollution Research, 2020,27:24090–24102.
[20]
黄满红,顾国维.地下水环境监测系统的设计 [J]. 环境监测管理与技术, 2003,15(1):13-15. Huang M H, Gu G W. The design about environmental monitoring system of underground water [J]. The Administration and Technique of Environmental Monitoring, 2003,15(1):13-15.
[21]
Philip D M, Albert J V, Eheart W. Monitoring network design to provide initial detection of groundwater contamination [J]. Water Resources Research, 1994,30(9):2647-2659.