Identification of chemical characteristics and hydraulic connection of each aquifer in complex mine field driven by coal mining
HUANG Lei1, HOU Ze-ming1, HAN Xuan1, XU Lei1, ZHANG Sheng-wei1,2, LI Gang-zhu1, LIU Zhi-qiang1
1. Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China; 2. Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application of Agriculture and Animal Husbandry, Hohhot 010018, China
Abstract:By analyzing the numerical characteristics of conventional elements, trace elements, deuterium, oxygenand tritium isotope of different aquifers, the groundwater chemical characteristics and hydraulic connection of each aquifer were judged. The three identification charts (piper and durov identification charts of conventional hydrochemical components and deuterium tritium isotope identification charts) were established to realize the rapid identification of aquifer water source. The results showed that the main recharge source of groundwater in the study area was atmospheric precipitation. There was a significant indigenous connection between Quaternary aquifer and Zhiluo Formation aquifer, limited indigenous connection between the Zhiluo Formation aquifer and the Yan'an Formation aquifer. The three identification charts were established to determine the water inrush source and put forward targeted solutions for water inrush from different aquifers in Bulianta mining area based on the differences in hydrochemical ion characteristics, deuterium-oxygen and tritium isotopes.
黄磊, 侯泽明, 韩萱, 许磊, 张圣微, 李钢柱, 刘志强. 采煤驱动下复杂井田含水层化学特征与水力联系辨识[J]. 中国环境科学, 2022, 42(6): 2697-2706.
HUANG Lei, HOU Ze-ming, HAN Xuan, XU Lei, ZHANG Sheng-wei, LI Gang-zhu, LIU Zhi-qiang. Identification of chemical characteristics and hydraulic connection of each aquifer in complex mine field driven by coal mining. CHINA ENVIRONMENTAL SCIENCECE, 2022, 42(6): 2697-2706.
杨永刚,孟志龙,秦作栋,等.采矿对山西水资源破坏过程的同位素示踪研究[J].中国环境科学, 2013,33(8):1447-1453.Yang Y G, Meng Z L, Qin Z D, et al. Isotope tracer study on the destruction processs of water resources by miningi n Shanxi Province[J]. China Environmental Science, 2013,33(8):1447-1453.
[2]
陈雪,许丹丹,钱雅慧,等.淮北刘桥二矿煤矸石多环芳烃污染特征及毒性评价[J].中国环境科学, 2022,42(2):753-760.Chen X, Xu D D, Qian Y H, et al. Pollution characteristics and toxicity evaluation of coal gangue polycyclic aromatic hydro carbonsin Liuqiao No.2 Coal Mine, Huaibei[J]. China Environmental Science, 2022,42(2):753-760.
[3]
钱鸣高,许家林.煤炭开采与岩层运动[J].煤炭学报, 2019,44(4):973-984.Qian M G, XuJ L. Behaviorsofstratamovementincoalmining[J]. Journalof China Coal Society, 2019,44(4):973-984.
[4]
冀瑞君,彭苏萍,范立民,等.神府矿区采煤对地下水循环的影响——以窟野河中下游流域为例[J].煤炭学报, 2015,40(4):938-943.Ji R J, Peng S P, Fan L M, et al. Effectofcoalexploita-tiononground watercirculationinthe Shenfuminearea:Anexam-plefrommiddle and lowerreachesofthe Kuye Riverbasin[J]. Journalof China Coal Society, 2015,40(4):938-943.
[5]
范立民,向茂西,彭捷,等.毛乌素沙漠与黄土高原接壤区泉的演化分析[J].煤炭学报, 2018,43(1):207-218.Fan L M, Xiang M X, Peng J, et al. Evolutionanaly sisonspring sincontiguo usareaof Maowusu Desertand Loess Plateau[J]. Journalof China Coal Society, 2018,43(1):207-218.
[6]
梁蓉蓉.孔隙含水层底板参数变化条件下煤矿开采对松散含水层影响规律的数值模拟研究[D].太原:太原理工大学.Liang R R. Numerical simulation studyontheinfluence of coal miningonlooseaquiferundertheconditionofchangeofporeaquiferfloorparameters[D]. Taiyuan:Taiyuanuniversityoftechnology.
[7]
侯泽明,黄磊,韩萱,等.采煤驱动下神东矿区地下水化学特征及控制因素[J].中国环境科学, 2022,42(5):2250-2259.Hou Z M, Huang L, Han X, et al. Hydrochemical character istics and controlling factors of groundwater driven by coal mining in Shendong mining area[J]. 2022,42(5):2250-2259.
[8]
顾大钊,张建民,王振荣,等.神东矿区地下水变化观测与分析研究[J].煤田地质与勘探, 2013,41(4):35-39.Gu D Z, Zhang J M. Wang Z R, et al. Observation and analysis of groundwater change in Shendong mining area[J]. Coal Geology& Exploration, 2013,41(4):35-39.
[9]
乔元栋,孟召平,张村,等.复杂构造井田含水层特征及其水力联系辨识[J/OL].煤炭学报:1-11[2021-12-30].http://kns.cnki.net/kcms/detail/11.2190.td.20211105.1522.005.html.Qiao Y D, Meng Z P, Zhang C, et. Characteristics of mine aqui fer with complex structure and identification of its hydraulic connection[J/OL]. Journal of China Coal Society:1-11[2021-12-30]. http://kns. cnki.net/kcms/detail/11.2190.td.20211105.1522.005.html.
[10]
刘利军.补连塔矿区水文地质报告[R].内蒙古自治区:神东煤炭集团地测公司, 2007..Liu L J. Hydrogeological Report of Bulianta Mining Area[R]. Inner Mongolia:Shendong Coal Group Geological Survey Company, 2007.
房丽晶,高瑞忠,贾德彬,等.草原流域地下水化学时空特征及环境驱动因素——以内蒙古巴拉格尔河流域为例[J].中国环境科学, 2021,41(5):2161-2169.Fang L J, Gao R Z, Jia D B, et al. Spatial-temporal characteristics of groundwater quality and its environment driving faxtors of Steppe Basin-taken Balager river basin of Inner Mongolia for instance[J]. China Environmental Science, 2021,41(5):2161-2169.
[13]
王建,韩海东,许君利,等.塔里木河流域出山径流水化学特征研究[J].中国环境科学, 2021,41(4):1576-1587.Wang J, Han H D, Xu J L, et. Hydro chemical characteristics of the mountain runoff in Tarim River Basin, China[J]. China Environmental Science, 2021,41(4):15,76-1587.
[14]
刘鑫,向伟,司炳成.汾河流域浅层地下水水化学和氢氧稳定同位素特征及其指示意义[J].环境科学, 2021,42(4):1739-1749.Liu X, Xiang W, Si B C, Hydrochemical and isotopic characteristics in the shallow groundwater of the Fenhe River Basin and indicative significance[J]. Environmental Science, 2021,42(4):1739-1749.
[15]
仁增拉姆,罗珍,陈虎林,等.西藏年楚河流域水化学特征分析[J].地球与环境, 2021,49(4):358-366.Renzeng Lamu, Luo Z, Chen H L, et al. Hydrochemical characteristics of Nyangchu River Basinin Tibet[J]. Earthand Environment, 2021, 49(4):358-366.
[16]
王文祥,李文鹏,蔡月梅,等.黑河流域中游盆地水文地球化学演化规律研究[J].地学前缘, 2021,28(4):184-193.Wang W X, Li W P, Cai Y M, et al. Thehydrogeochemical evolution ofgroundwaterinthemiddlereachesofthe Heihe River Basin[J]. Earth Science Frontiers, 2021,28(4):184-193.
[17]
雷米,周金龙,张杰,等.新疆博尔塔拉河流域平原区地表水与地下水水化学特征及转化关系[J].环境科学, 2022,43(4):1873-1884Lei M, ZHou J L, Zhang J, et al. Hydrochemical characteristics and transformation relationship of surface water and groundwater in the plain area of Bortala River Basin, Xinjiang[J]. Environmental Science, 2022,43(4):1873-1884.
[18]
房满义,李雪妍,张根,等.大柳塔煤矿地下水库水岩作用机理分析[J/OL].煤炭科学技术, 1-8[2021-12-31].http://kns.cnki.net/kcms/detail/11.2402.TD.20200502.0813.002.html.Fang M Y, Li X Y, Zhang G, et al. Discussion on water-rock interaction mechanism in underground reservoir of Daliuta coal mine[J/OL]. Coal Scienceand Technology, 1-8[2021-12-31]. http://kns.cnki.net/kcms/detail/11.2402.TD.20200502.0813.002.html.
[19]
李伟..神东矿区2012年水文地质报告[R].内蒙古自治区:神东煤炭集团地测公司, 2012.Li W. Shendong Mining Area hydrogeological report[R]. Inner Mongolia:Shendong Coal Group Geological Survey Company, 2012.
[20]
杨雅琪.辛置矿井主要充水含水层地下水化学特征及成因机制研究[D].江苏:中国矿业大学, 2020.Yang Y Q. Research on groundwater chemical characteristics and gene sis mechanism of main water-filled aquifers in Xinzhi Coal Mine[D]. China Universityof Mining& Technology.
[21]
樊燕.煤矿开采对上覆含水层影响的数值模拟研究[D].太原:太原理工大学, 2011.Fan Y. Numerical simulation study on the influence of coal mining on overlying aquifer[D]. Taiyuan:Taiyuan Universityof Technology.
[22]
王甜甜,张雁,赵伟,等.伊敏矿区地下水水化学特征及其形成作用分析[J].环境化学, 2021,40(5):1480-1489.Wang T T, Zhang Y, Zhao W, et al. Hydrogeochemical characteristics and formation process of groundwater in Yimin mining area[J].. Environmental Chemistry, 2021,40(5):1480-1489.
[23]
贾艳琨,王经兰,王东升.环境同位素在水文地质和环境地质研究中的应用[J].地球学报, 2005,26(Z1):307-308.Jia Y K, Wang J L, Wang D S. The application of environmental isotopesto hydrogeology and environmental geolo-gy[J]. Acta Geoscientica Sinica, 2005,26(Z1):307-308.
[24]
Ayenew T, Kebede S, Alemyahu T. Environmental isotopes and hydrochemical study applied to surface water and groundwater in teraction in the Awash Riverbasin[J]. Hydrological Processes, 2010,22(10):1548-1563.
[25]
徐秋娥,刘澄静,角媛梅,等.稳定氢氧同位素示踪水汽来源对哈尼梯田降水补给的影响[J].生态学报, 2020,40(5):1709-1717.Xu Q E, Liu C J, Jiao Y M, et al. Impacts of stable isotopic composition and moisture sources of precipitation on precipitation recharge of Hani Rice Terraces during the dry season[J]. Acta Ecologica Sinica, 2020,40(5):1709-1717.
[26]
郭洋楠,杨俊哲,张政,等.神东矿区矿井水的氢氧同位素特征及高氟矿井水形成的水-岩作用机制[J/OL].煤炭学报:1-15[2021-10-09].https://doi.org/10.13225/j.cnki.jccs.2021.0388.Guo Y N, Yang J Z, Zhang Z, et al. Hydrogenand oxygenlsotope characteristicsof mine water in the Shendong Mine area and water-rock reactions mechanism of the formation of high-fluoride mine water[J]. Journal of China Coal Society, 1-15[2021-10-09].
[27]
付昌昌,李向全,马剑飞,等.窟野河流域中游煤矿区地下水质量及补给来源研究[J].水文, 2018,38(6):42-47.Fu C C, Li X Q, Ma J F, et al. Study on groundwater quality and recharge sources in middler eaches of Kuye River Basin[J]. hydrology, 2018,38(6):42-47.
[28]
梁向阳,方刚,黄浩.榆神矿区曹家滩井田水文地球化学特征研究[J].干旱区资源与环境, 2020,34(5):102-108.Liang X Y, Fang G, Huang H. Hydrogeochemical characteristics of Caojiatan mine field in Yushen Mining Area[J]. Journalof Arid Land Resourcesand Environment, 2020,34(5):102-108.
[29]
黄平华,祝金峰,邓勇,等.地下水中氚同位素分布模型及其应用[J].煤炭学报, 2013,38(S2):448-452.Huang P H, Zhu J F, Deng Y, et al. Distribution model and application of groundwatert ritium isotope[J]. Journal of the China Coal Society, 2013,38(S2):448-452.
[30]
张鑫,张妍,毕直磊,等.中国地表水硝酸盐分布及其来源分析[J].环境科学, 2020,41(4):1594-1606.Zhang X, Zhang Y, Bi Z L, et al. Distribution and source anal ysis of nitratein surfacewaters of China[J]. Environmental Earth Sciences, 2020,41(4):1594-1606.
[31]
苏贺,康卫东,杨永康.基于水化学和稳定同位素的黄土区地下水硝酸盐来源示踪[J].太原理工大学学报, 2021,52(5):775-788.Su H, Kang W D, Yang Y K. Source tracing of ground water nitrate in loess area based on hydrochemistry and stable isotope[J]. Journal of Taiyuan University of Technology, 2021,52(5):775-788.
[32]
王磊.地下水中硝酸盐氮污染源解析[D].北京:中国地质大学(北京), 2016.Wang L. Analysis of nitrate nitrogen pollution sources in groundwater[D]. Beijing:China University of Geosciences (Beijing).
[33]
郝春明,张伟,何瑞敏,等.神东矿区高氟矿井水分布特征及形成机制[J].煤炭学报, 2021,46(6):1966-1977.Hao C M, Zhang W, He R M, et al. Formation mechanisms for elevated fluoride in the minewater in Shendong coal-mining district.[J] Journalof China Coal Society, 2021,46(6):1966-1977.
[34]
唐春雷,郑秀清,梁永平.龙子祠泉域岩溶地下水水化学特征及成因[J].环境科学, 2020,41(5):2087-2095.Tang C L, Zheng X Q, Liang Y P. Hydrochemical characteristics and formation causes of ground karstwater systems in the Longzici Spring Catchment[J]. Environmental Science, 2020,41(5):2087-2095.