Temperature sensitivity and controlling factors of dissimilatory nitrate reduction processes in sediments of Qingcaosha reservoir, Yangtze Estuary
HU Xiao-ting1, CHENG Lü1, LIN Xian-biao1, LIU Min1, LU Min1, HOU Li-jun2
1. School of Geographical Sciences, East China Normal University, Shanghai 200062, China;
2. Skate Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
Slurry incubation experiments combinatedwith isotope-tracing techniques were conducted toexaminethe effectsof temperature on dissimilatory nitrate reductionprocesses and reveal associated environmental variables in Qingcaosha reservoir, the Yangtze Estuary.Results indicated that the potential rates of denitrification, anammox and DNRA in thereservoir sediments werein the range of 0.18~6.86, 0.26~3.16and 0.09~0.25μmol N/(kg·h), respectively, at in situ temperature (10℃). The denitrification rates ranged from 0.43to 6.22and from 0.68to 6.56μmol N/(kg·h), increased by mean value of 15.7% at 20℃ and 21.6% 30℃, compared to that in 10℃. Anammox rates varied from 0.61 to 3.2μmol N/(kg·h)at 20℃ and from 0.77 to 3.54μmol N/(kg·h)at 30℃, increased by 27.8% and 42.6%. However, DNRA rates ranged between 0.09 and 0.23μmol N/(kg·h)at 20℃, and from 0.1 to 0.18μmol N/(kg·h)at 30℃, reduced by 4.2% compared to that in 10℃. Anammoxwas most sensitive to changes in the temperature, followed by denitrification, and increased with incrasedtemperature; the DNRA was least sensitive to temperature, decreased with the incrasedtemperature. OC, NH4+, Fe2+ and S2- werefound to have significant influence on these nitrate reduction processes. Denitrification and anammoxcontributed respectively 34%~71% and 28%~49% to the total nitrate reduction, while DNRA only contributed 2%~17% in the Qingcaosha reservoir. Denitrificationand anammoxprocesses were estimated to remove 3.25×103 t/a and 1.68×103 t/a of nitrogen, accounting for 54.17% of the total external nitrogen transported into the reservoir.
胡晓婷, 程吕, 林贤彪, 刘敏, 陆敏, 侯立军. 沉积物硝酸盐异化还原过程的温度敏感性与影响因素——以长江口青草沙水库为例[J]. 中国环境科学, 2016, 36(9): 2624-2632.
HU Xiao-ting, CHENG Lü, LIN Xian-biao, LIU Min, LU Min, HOU Li-jun. Temperature sensitivity and controlling factors of dissimilatory nitrate reduction processes in sediments of Qingcaosha reservoir, Yangtze Estuary. CHINA ENVIRONMENTAL SCIENCECE, 2016, 36(9): 2624-2632.
Seitzinger S. Nitrogen cycle: Out of reach[J]. Nature, 2008, 452:162-163.
[1]
Seitzinger S. Nitrogen cycle: Out of reach[J]. Nature, 2008, 452:162-163.
[2]
Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions[J]. Science, 2008,320(5878):889-892.
[2]
Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions[J]. Science, 2008,320(5878):889-892.
[3]
Cui S H, Shi Y L, Groffman P M, et al. Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910~2010)[J]. Proc. Natl. Acad. Sci. U.S.A., 2013,110(6):2052-2057.
Cui S H, Shi Y L, Groffman P M, et al. Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910~2010)[J]. Proc. Natl. Acad. Sci. U.S.A., 2013,110(6):2052-2057.
Deegan L A, Johnson D S, Warren R S, et al. Coastal eutrophication as a driver of salt marsh loss[J]. Nature, 2012, 490:388-392.
[5]
Deegan L A, Johnson D S, Warren R S, et al. Coastal eutrophication as a driver of salt marsh loss[J]. Nature, 2012, 490:388-392.
[6]
Kuypers M M M, Lavik G, Woebken D, et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation[J]. Proc. Natl. Acad. Sci. U. S. A., 2005, 102(18):6478-6483.
[6]
Kuypers M M M, Lavik G, Woebken D, et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation[J]. Proc. Natl. Acad. Sci. U. S. A., 2005, 102(18):6478-6483.
[7]
Engström P, Dalsgaard T, Hulth S, et al. Anaerobic ammonium oxidation by nitrite (anammox): Implications for N2 production in coastal marine sediments[J]. Geochim. Cosmochim. Acta, 2005, 69(8):2057-2065.
[7]
Engström P, Dalsgaard T, Hulth S, et al. Anaerobic ammonium oxidation by nitrite (anammox): Implications for N2 production in coastal marine sediments[J]. Geochim. Cosmochim. Acta, 2005, 69(8):2057-2065.
[8]
Burgin A J, Hamilton S K. Have we overemphasized the role of denitrification in aquatic ecosystems a review of nitrate removal pathways[J]. Front. Ecol. Environ., 2007,5(2):89-96.
[8]
Burgin A J, Hamilton S K. Have we overemphasized the role of denitrification in aquatic ecosystems a review of nitrate removal pathways[J]. Front. Ecol. Environ., 2007,5(2):89-96.
[9]
Gardner W S, McCarthy M J, An S, et al. Nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA) support nitrogen dynamics in Texas estuaries[J]. Limnol. Oceanogr., 2006,51(1):558-568.
[9]
Gardner W S, McCarthy M J, An S, et al. Nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA) support nitrogen dynamics in Texas estuaries[J]. Limnol. Oceanogr., 2006,51(1):558-568.
[10]
Deng F Y, Hou L J, Liu M, et al. Dissimilatory nitrate reduction processes and associatedcontribution to nitrogen removal in sediments of the Yangtze Estuary[J]. J. Geophys. Res. Biogeosci., 2015,120(8):1521-1531.
[10]
Deng F Y, Hou L J, Liu M, et al. Dissimilatory nitrate reduction processes and associatedcontribution to nitrogen removal in sediments of the Yangtze Estuary[J]. J. Geophys. Res. Biogeosci., 2015,120(8):1521-1531.
[11]
Song G D, Liu S M, Marchant H, et al. Anaerobic ammonium oxidation, denitrification and dissimilatory nitrate reduction to ammonium in the East China Sea sediment[J]. Biogeosciences, 2013,10(11):6851-6864.
[11]
Song G D, Liu S M, Marchant H, et al. Anaerobic ammonium oxidation, denitrification and dissimilatory nitrate reduction to ammonium in the East China Sea sediment[J]. Biogeosciences, 2013,10(11):6851-6864.
Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the Nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008,320(5878):889-892.
[13]
Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the Nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008,320(5878):889-892.
[14]
Phlips E J, Cichra M, Havens K, et al. Relationships between phytoplankton dynamics and the availability of light and nutrients in a shallow sub-tropical lake[J]. J. Plankt. Res. 1997,19(3):319-342.
[14]
Phlips E J, Cichra M, Havens K, et al. Relationships between phytoplankton dynamics and the availability of light and nutrients in a shallow sub-tropical lake[J]. J. Plankt. Res. 1997,19(3):319-342.
[15]
Canion A, Kostka J E, Gihring T M, et al. Temperature response of denitrification and Anammox reveals the adaptation of microbial communities to in situ temperatures in permeable marine sediments that span 50°in latitude[J]. Biogeosciences, 2014,11:309-320.
[15]
Canion A, Kostka J E, Gihring T M, et al. Temperature response of denitrification and Anammox reveals the adaptation of microbial communities to in situ temperatures in permeable marine sediments that span 50°in latitude[J]. Biogeosciences, 2014,11:309-320.
[16]
Kawagoshi Y, Fujisaki K, Tomoshige Y, et al. Temperature effect on nitrogen removal performance and bacterial community in culture of marine Anammox bacteria derived from sea-based waste disposal site[J]. J. of Biosci. Bioeng., 2012,113(4):515- 520.
Kawagoshi Y, Fujisaki K, Tomoshige Y, et al. Temperature effect on nitrogen removal performance and bacterial community in culture of marine Anammox bacteria derived from sea-based waste disposal site[J]. J. of Biosci. Bioeng., 2012,113(4):515- 520.
Smyth A R, Thompson S P, Siporin K N, et al. Assessing Nitrogen Dynamics Throughout the Estuarine Landscape[J]. Estuaries and Coasts, 2013,36(1):44-55.
[21]
Smyth A R, Thompson S P, Siporin K N, et al. Assessing Nitrogen Dynamics Throughout the Estuarine Landscape[J]. Estuaries and Coasts, 2013,36(1):44-55.
[22]
鲍士旦.土壤农化分析[M] 3版.北京:中国农业出版社, 2000.
[22]
鲍士旦.土壤农化分析[M] 3版.北京:中国农业出版社, 2000.
[23]
Hsieh Y P, Yang C H. Diffusion methods for the determination of reduced inorganic sulfur species in sediments[J]. Limnol. Oceanogr., 1989,34(6):1126-l130.
[23]
Hsieh Y P, Yang C H. Diffusion methods for the determination of reduced inorganic sulfur species in sediments[J]. Limnol. Oceanogr., 1989,34(6):1126-l130.
[24]
Seitzinger S P. Linkages between organic matter mineralization and denitrification in eight riparian wetlands[J]. Biogeochemistry, 1994,25(1):19-39.
[24]
Seitzinger S P. Linkages between organic matter mineralization and denitrification in eight riparian wetlands[J]. Biogeochemistry, 1994,25(1):19-39.
[25]
Devol A H. Denitrification, anammox, and N2 production in marine sediments[J]. Annu. Rev. of Mar. Sci., 2015,7:403-423.
[25]
Devol A H. Denitrification, anammox, and N2 production in marine sediments[J]. Annu. Rev. of Mar. Sci., 2015,7:403-423.
Tomaszek J A and Rokosz G R. Rates of dissimilatory nitrate deduction to ammonium in two polish reservoirs: impacts of temperature, organic matter content, and nitrate concentration[J]. Environmental Technology, 2007,28(7):771-778.
[27]
Tomaszek J A and Rokosz G R. Rates of dissimilatory nitrate deduction to ammonium in two polish reservoirs: impacts of temperature, organic matter content, and nitrate concentration[J]. Environmental Technology, 2007,28(7):771-778.
[28]
Bradbury D C, Firestone M K. Environmental control of microbial N transformations in redwood forests[R]. In (edsStandiford R B, Giusti G A, Valachovic Y, et al.), Proceedings of the Redwood Region Forest Science Symposium: What Does the Future Hold? Gen. Tech. Rep. PSW-GTR-194. Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture, Albany, CA, USA, 2007,203-204.
[28]
Bradbury D C, Firestone M K. Environmental control of microbial N transformations in redwood forests[R]. In (edsStandiford R B, Giusti G A, Valachovic Y, et al.), Proceedings of the Redwood Region Forest Science Symposium: What Does the Future Hold? Gen. Tech. Rep. PSW-GTR-194. Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture, Albany, CA, USA, 2007,203-204.
[29]
Jäntti H, Stange F, Leskinen E, et al. Seasonal variation in nitrification and nitrate-reduction pathways in coastal sediments in the Gulf of Finland, Baltic Sea[J]. Aquatic Microbial Ecology, 2011,63(2):171-181.
[29]
Jäntti H, Stange F, Leskinen E, et al. Seasonal variation in nitrification and nitrate-reduction pathways in coastal sediments in the Gulf of Finland, Baltic Sea[J]. Aquatic Microbial Ecology, 2011,63(2):171-181.
[30]
Gameron S G and Schipper L A. Nitrate removal and hydraulic performance of organic carbon for use in denitrification beds[J]. Ecolog. Eng., 2010,36(11):1588-1595.
[30]
Gameron S G and Schipper L A. Nitrate removal and hydraulic performance of organic carbon for use in denitrification beds[J]. Ecolog. Eng., 2010,36(11):1588-1595.
Li Jie, Zhang Jie, Zhou Shaoqi. The TOC and IC impact study of anaerobic ammonia oxidation reaction[J]. Water&Wastewater Engineering, 2008,34(11):157-160.
[33]
Li Jie, Zhang Jie, Zhou Shaoqi. The TOC and IC impact study of anaerobic ammonia oxidation reaction[J]. Water&Wastewater Engineering, 2008,34(11):157-160.
[34]
Sears K, Alleman J E, Barnard J L, et al. Impacts of reduced sulfur components on active and resting ammonia oxidizers[J]. J. Ind. Microbiol. Biotechnol., 2004,31(8):369-378.
[34]
Sears K, Alleman J E, Barnard J L, et al. Impacts of reduced sulfur components on active and resting ammonia oxidizers[J]. J. Ind. Microbiol. Biotechnol., 2004,31(8):369-378.
[35]
Davidsson T E, Ståhl M. The influence of organic carbon on nitrogen transformations in five wetland soils[J]. Soil Sci. Soc. Am. J., 2000,64(3):1129-1136.
[35]
Davidsson T E, Ståhl M. The influence of organic carbon on nitrogen transformations in five wetland soils[J]. Soil Sci. Soc. Am. J., 2000,64(3):1129-1136.
[36]
Burgin A J, Hamilton S K. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways[J]. Front. Ecol. Environ., 2007,5(2):89-96.
[36]
Burgin A J, Hamilton S K. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways[J]. Front. Ecol. Environ., 2007,5(2):89-96.
[37]
Sweerts J R A, Beer D D, Nielsen L P, et al. Denitrification by sulphur oxidizing Beggiatoa spp. mats on freshwater sediments[J]. Nature, 1990,344(6268):762-763.
[37]
Sweerts J R A, Beer D D, Nielsen L P, et al. Denitrification by sulphur oxidizing Beggiatoa spp. mats on freshwater sediments[J]. Nature, 1990,344(6268):762-763.
[38]
Sayama M, Risgaard-Petersen N, Nielsen L P, et al. Impact of bacterial NO3- transport on sediment biogeochemistry[J]. Appl. Environ. Microbiol., 2005,71(11):7575-7577.
[38]
Sayama M, Risgaard-Petersen N, Nielsen L P, et al. Impact of bacterial NO3- transport on sediment biogeochemistry[J]. Appl. Environ. Microbiol., 2005,71(11):7575-7577.
[39]
Ogilvie B G, Rutter M, Nedwell D B. Selection by temperature of nitrate-reducing bacteria from estuarine sediments: species composition and competition for nitrate[J]. FEMS Microbiol. Ecol., 1997,23(1):11-22.
[39]
Ogilvie B G, Rutter M, Nedwell D B. Selection by temperature of nitrate-reducing bacteria from estuarine sediments: species composition and competition for nitrate[J]. FEMS Microbiol. Ecol., 1997,23(1):11-22.
[40]
An S, Gardner W S. Dissimilatory nitrate reduction to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas)[J]. Mar. Ecol. Prog. Ser., 2002,237:41-50.
[40]
An S, Gardner W S. Dissimilatory nitrate reduction to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas)[J]. Mar. Ecol. Prog. Ser., 2002,237:41-50.
[41]
Roberts K L, Kessler A J, Grace M R et al. Increased rates of dissimilatory nitrate reduction to ammonium (DNRA) under oxic conditions in a periodically hypoxic estuary[J]. Geochimicaet Cosmochimica Acta, 2014,133:313-324.
[42]
Brunet R C, Garcia-Gil L J. Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments[J]. FEMS Microbiol. Ecol., 1996,21(2):131-138.
[41]
Roberts K L, Kessler A J, Grace M R et al. Increased rates of dissimilatory nitrate reduction to ammonium (DNRA) under oxic conditions in a periodically hypoxic estuary[J]. Geochimicaet Cosmochimica Acta, 2014,133:313-324.
[42]
Brunet R C, Garcia-Gil L J. Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments[J]. FEMS Microbiol. Ecol., 1996,21(2):131-138.
[43]
Golterman H L. Influence of FeS on denitrification in shallow waters[J]. Verb. Int. Ver. Limnol., 1991,24:3025-3028.
[43]
Golterman H L. Influence of FeS on denitrification in shallow waters[J]. Verb. Int. Ver. Limnol., 1991,24:3025-3028.
[44]
Garcia-Gil L J, Golterman H L. Kinetics of FeS-mediated denitrification in sediments from Camargue (Rhone delta, South-France)[J]. FEMS Microbial. Ecol., 1993,13(2):85-91.
[44]
Garcia-Gil L J, Golterman H L. Kinetics of FeS-mediated denitrification in sediments from Camargue (Rhone delta, South-France)[J]. FEMS Microbial. Ecol., 1993,13(2):85-91.
[45]
Gruber N, Galloway J N. An Earth-system perspective of the global nitrogen cycle[J]. Nature, 2008,451:293-296.
[46]
Bonin P, Omnes P, Chalamet A. Simultaneous occurrence of denitrification and nitrate ammonification in sediments of the French Mediterranean Coast[J]. Hydrobiologia, 1998,389(1): 169-182.
[47]
Dong L F, Smith C J, Papaspyrou S, et al. Changes in benthic denitrification, nitrate ammonification, and Anammox process rates and nitrate and nitrite reductase gene abundances along an estuarine nutrient gradient (the Colne Estuary, United Kingdom)[J]. Appl. Environ. Microbiol., 2009,75(10):3171-3179.
[45]
Gruber N, Galloway J N. An Earth-system perspective of the global nitrogen cycle[J]. Nature, 2008,451:293-296.
[46]
Bonin P, Omnes P, Chalamet A. Simultaneous occurrence of denitrification and nitrate ammonification in sediments of the French Mediterranean Coast[J]. Hydrobiologia, 1998,389(1): 169-182.
[48]
Hou L J, Liu M, Carini S A, et al. Transformation and fate of nitrate near the sediment-water interface of CopanoBay,Cont[J]. Continental Shelf Research, 2012,35:86-94.
[47]
Dong L F, Smith C J, Papaspyrou S, et al. Changes in benthic denitrification, nitrate ammonification, and Anammox process rates and nitrate and nitrite reductase gene abundances along an estuarine nutrient gradient (the Colne Estuary, United Kingdom)[J]. Appl. Environ. Microbiol., 2009,75(10):3171-3179.
[49]
Hietanen S, Kuparinen J. Seasonal and short-term variation in denitrification and Anammox at a coastal station on the Gulf of Finland, Baltic Sea[J]. Hydrobiologia, 2008,596(1):67-77.
[48]
Hou L J, Liu M, Carini S A, et al. Transformation and fate of nitrate near the sediment-water interface of CopanoBay,Cont[J]. Continental Shelf Research, 2012,35:86-94.
[50]
Glud R N, Thamdrup B, Stahl H, et al. Nitrogen cycling in a deep ocean margin sediment (Sagami Bay, Japan)[J]. Limnol. Oceanogr., 2009,54(3):723-734.
[49]
Hietanen S, Kuparinen J. Seasonal and short-term variation in denitrification and Anammox at a coastal station on the Gulf of Finland, Baltic Sea[J]. Hydrobiologia, 2008,596(1):67-77.
[51]
Seitzinger S P. Denitrification in freshwater and coastal marine ecosystem: Ecological and geochemical significance[J]. Limnol. Oceanogr., 1988,33(4):702-724.
[50]
Glud R N, Thamdrup B, Stahl H, et al. Nitrogen cycling in a deep ocean margin sediment (Sagami Bay, Japan)[J]. Limnol. Oceanogr., 2009,54(3):723-734.
[52]
Seitzinger S P, Kroeze C. Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine Ecosystems[J]. Global Biogeochem. Cycles, 1998,12(1):93-113.
[51]
Seitzinger S P. Denitrification in freshwater and coastal marine ecosystem: Ecological and geochemical significance[J]. Limnol. Oceanogr., 1988,33(4):702-724.
[52]
Seitzinger S P, Kroeze C. Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine Ecosystems[J]. Global Biogeochem. Cycles, 1998,12(1):93-113.
[53]
Wang Q, Koshikawa H, Liu C, et al. 30-year changes in the nitrogen inputs to the Yangtze River Basin[J]. Environ. Res. Lett., 2014,9(11):5005-5016.
[53]
Wang Q, Koshikawa H, Liu C, et al. 30-year changes in the nitrogen inputs to the Yangtze River Basin[J]. Environ. Res. Lett., 2014,9(11):5005-5016.