Abstract:In term of the effects of peanut shell blending on the combustion performance pollution emission of sewage sludge, the effects of heating rate and peanut shell blending ratio on the combustion process were analyzed. The results showed that when the peanut shell blending ratio was 40% and the heating rate increased from 5℃/min to 30℃/min, the composite combustion performance index and volatile matter release characteristic index increased 6.9 times and 4.5 times respectively. When the heating rate was 30℃/min, and the blending ratio of peanut shell increased from 0% to 40%, the comprehensive combustion performance index and volatile matter release characteristic index of samples increase by 1.7 times and 5.6 times, respectively, indicating that peanut shell blending can effectively improve the combustion performance of sewage sludge. The results of non-isothermal kinetic fitting showed that the activation energy decreased from 89.16 kJ/mol to 69.73 kJ/mol with the increase of peanut shell blending ratio, which was beneficial for the combustion reaction. The real-time monitoring of pollution gas showed that the peak of NO emission decreased 60% when the peanut shell blending ratio increased from 10% to 40%, indicating that the peanut shell could significantly reduce the emission of pollution gas during combustion process.
房振全,满佳琪,刘菲菲,等.污泥焚烧细颗粒物中重金属赋存形态的研究[J]. 中国环境科学, 2020,40(7):3044-3053. Fang Z Q, Man J Q, Liu F F, et al. Study on the occurrence characteristics of heavy metals in fine particulate matter during sludge incineration[J]. China Environmental Science, 2020,40(7):3044-3053
[4]
薛重华,孔祥娟,王胜,等.我国城镇污泥处理处置产业化现状、发展及激励政策需求[J]. 净水技术, 2018,37(12):33-39. Xue C H, Kong X J, Wang S, et al. Industrialization Status,Development Analysis and Incentive Policy Demands of Municipal Sludge Treatment and Disposal Industry in China[J]. Water Purification Technology, 2018,37(12):33-39.
[5]
唐子君,方平,岑超平,等.印染污泥焚烧烟气污染控制案例分析[J]. 中国环境科学, 2013,33(9):1591-1595. Tang Z J, Fang P, Ceng Z C, et al. Analysis of air pouutants emission control cases on textile dyeing sludge incineration[J]. China Environmental Science, 2013,33(9):1591-1595.
[6]
中华人民共和国国家发展改革委和住房与城乡建设部.城镇生活污水处理设施补短板强弱项实施方案[Z]. 2020:3-4. http://www.gov.cn/zhengce/zhengceku/202008/06/content_5532768.htm State Council of the People's Republic of China.Action Plan for Water Pollution Prevention and Control[Z]. 2020:3-4.
[7]
许桂英,胡团桥,魏和涛,等.Fenton/CaO调理污泥与生物质成型燃料燃烧污染物排放[J]. 中国环境科学, 2021,41(5):2108-2116. Xv G Y, Hu T Q, Wei H T, et al. Study on gas pollutants emission characteristics of Fenton/CaO conditioned municipal sludge and biomass mixed fuels combustion[J]. China Environmental Science,2021,41(5):2108-21,16
[8]
Xie W H, Huang J L, Liu J Y, et al. Assessing thermal behaviors and kinetics of (co-)combustion of textile dyeing sludge and sugarcane bagasse[J]. Applied Thermal Engineering, 2018,131:874-883.
[9]
Liu H P, Zhang S Q, Feng S Y, et al. Combustion characteristics and typical pollutant emissions of corn stalk blending with municipal sewage sludge[J]. Environmental science and pollution research international, 2020,28(8):9792-9805.
[10]
Wang T, Hou H B, Ye Y, et al. Combustion behavior of refuse-derived fuel produced from sewage sludge and rice husk/wood sawdust using thermogravimetric and mass spectrometric analyses[J]. Journal of Cleaner Production, 2019,222:1-11.
[11]
Wang C, Wang X, Jiang X, et al. The thermal behavior and kinetics of co-combustion between sewage sludge and wheat straw[J]. Fuel Processing Technology, 2019,189:1-14.
[12]
Chen J C, He Y, Liu J Y, et al. The mixture of sewage sludge and biomass waste as solid biofuels:Process characteristic and environmental implication[J]. Renewable Energy, 2019,139:707-717.
[13]
何萍,张京京,潘懿,等.污泥生物质混合燃料燃烧特性分析[J]. 化学试剂, 2021,43(6):830-835. He P, Zhang J J, Pan Y, et al. Combustion characteristics analysis of sludge biomass mixed fuel[J]. Chemical Reagent, 2021,43(6):830-835.
[14]
Djalal T. Comments on "Co-pelletization of sewage sludge and biomass:Thermogravimetric analysis and ash deposits"[J]. Fuel Processing Technology, 2016,153:173.
[15]
Wang Y G, Liu Y, Yang W J, et al. Evaluation of combustion properties and pollutant emission characteristics of blends of sewage sludge and biomass[J]. Science of The Total Environment, 2020, 720:137365.
[16]
阮敏,曾志豪,祖丽胡玛尔·塔依尔,等.市政污泥与石下江褐煤混合燃烧动力学及协同特性研究[J]. 煤炭转化, 2021,44(1):43-50. Ruan M, Zeng Z H, Tayier Z, et al. Co-combustion knetics and synergistic characteristics of sewage sludge and Shixiajiang lignite[J]. Coal Conversion, 2021,44(1):43-50.
[17]
彰金宝,刘好文,周科,等.不同含水率污泥与煤混烧的燃烧特性与反应动力学研究[J]. 锅炉技术, 2021,52(4):30-37. Zhang J B, Liu H W, Zhou K, et al. Study on combustion characteristics and reaction kinetics of sludge and coal co-combustion with different moisture content[J]. Boiler Technology, 2021,52(4):30-37.
[18]
王伟安,李小明,吴浩,等.转炉除尘灰与纳米催化剂对不同煤阶燃料燃烧特性的影响[J]. 煤炭转化, 2020,43(3):8-16. Wang W A, Li X M, Wu H, et al. Effect of filter dust from basic oxygen furnace steelmaking and nano-catalyst on combustion characteristics of different coal rank fuels[J]. Coal Conversion, 2020, 43(3):8-16.
[19]
Chen G Y, He S R, Cheng Z J, et al. Comparison of kinetic analysis methods in thermal decomposition of cattle manure by themogravimetric analysis[J]. Bioresource Technology, 2017,243:69-77.
[20]
孟涛,邢小林,陈传恒,等.污泥-烟煤混合燃料燃烧特性与动力学研究[J]. 热力发电, 2021,50(5):87-93. Meng T, Xing X L, Chen C H, et a1. Smdy on co-combustion characteristics and kinetics ofmixing fuel of sludge and coal[J]. Thermal Power Generation, 2021,50(5):87-93.
[21]
郑洪岩,贾丁丁,赵言,等.气化残炭与低阶煤混燃特性及动力学分析[J]. 华电技术, 2020,42(7):74-80. Zheng H Y, Jia D D, Zhao Y, et al. Co-combustion characteristics and kinetics analysis of residual carbon from gasification and low-rank coals[J]. Huadian Technology, 2020,42(7):74-80.
[22]
董朝艳,钟英杰,邓凯,等.印染污泥热解和燃烧特性的对比实验研究[J]. 浙江工业大学学报, 2014,42(2):147-151. Dong Z Y, Zhong Y J, Deng K, et al. The contrast experiment research between pyrolysis and combustion characteristics of dyeing sludge[J]. Journal of Zhejiang University of Technology, 2014,42(2):147-151.
[23]
李洋洋,金宜英,聂永丰.污泥与煤混烧动力学及常规污染物排放分析[J]. 中国环境科学, 2014,34(3):604-609. Li Y Y, Jing Y Y, Nie Y F. Effects of sewage sludge on coal combustion using thermo-gravimetric kinetic analysis[J]. China Environmental Science, 2014,34(3):604-609.
[24]
Peng C, Zhai Y B, Zhu Y, et al. Production of char from sewage sludge employing hydrothermal carbonization:Char properties, combustion behavior and thermal characteristics[J]. Fuel, 2016, 176:110-118.
[25]
Gunaseea S D, Carrier M, Gorgens J F, et al. Pyrolysis and combustion of municipal solid wastes:Evaluation of synergistic effects using TGA-MS[J]. Journal of Analytical and Applied Pyrolysis, 2016,121:50-61.
[26]
Peng X W, Ma X Q, Xu Z B. Thermogravimetric analysis of co-combustion between microalgae and textile dyeing sludge[J]. Bioresource Technology, 2015,180:288-295.
[27]
Cao L, Yuan X Z, Jiang L B, et al. Thermogravimetric characteristics and kinetics analysis of oil cake and torrefied biomass blends[J]. Fuel, 2016,175:129-136.
[28]
Wang G W, Zhang J L, Shao J G, et al. Thermal behavior and kinetic analysis of co-combustion of waste biomass/low rank coal blends[J]. Energy Conversion and Management, 2016,124:414-426.
[29]
Magdziarz A, Werleb S. Thermal behavior and kinetic analysis of co-combustion of waste biomass/low rank coal blends[J]. Energy Conversion and Management, 2016,124:414-426.
[30]
Shao L M, Fan S S, Zhang H. SO2 and NOxemissions from sludge combustion in a CO2/O2 atmosphere[J]. Fuel, 2013,109:178-183.
[31]
Shaddix C R, Molina A. Fundamental investigation of NOx formation during oxy-fuel combustion of pulverized coal[J]. Proceedings of the Combustion Institute, 2011,33:1723-1730.
[32]
Song Y, Wang Y, Yang W, et al. Reduction of NO over biomass tar in micro-fluidized bed[J]. Fuel Processing Technology, 2014,114:270-277.