Hopanoids biomarkers and their indications in the marine carbon and nitrogen cycles
YIN Mei-ling1,2,3,4, DUAN Li-qin1,2,3,4, SONG Jin-ming1,2,3,4, YUAN Hua-mao1,2,3,4, LI Xue-gang1,2,3,4
1. Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; 4. Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Abstract:The microbe-mediated marine biogeochemical cycles of carbon (C) and nitrogen (N) have an important impact on the global climate changes. The hopanoids of pentacyclic triterpenoids, including biological hopanoids (e.g., bacteriohopanepolyols (BHPs)) and geological hopanoids (e.g., hopanes), are important lipid biomarkers for indicating and reconstructing C and N cycles in modern and ancient environments. In this paper, we reviewed the biosynthetic pathways and physiological functions of hopanoids, and their roles as indicators in the key processes of the marine C and N cycles (i.e., nitrogen fixation, nitrification, anammox, methane oxidation and terrestrial organic matter input). The hopanoids in microbial membrane lipids are mainly regulated by enzymes of hopanoids synthesis and modification encoded with hpn gene, which are closely related to microbial physicochemical characteristics and environmental conditions. The oxygen permeability of cell membrane can be regulated by 2-methyl hopanoids, 2-methyl cyclitol ether and unsaturated cyclitol ether to protect nitrogenase, being able to indicate the diazotrophic cyanobacteria and N-fixation. Marine anammox bacteria Candidatus Scalindua is the only producer known as BHT-x (one of bacteriohopanetetrol isomers) so far, which can indicate marine anammox and hypoxic environment. Soil markers BHPs and terrestrial inputs indicator of Rsoil can track the input and migration of terrestrial organic matter to the ocean. Biomarkers 35-amino BHPs and 3-methyl (amino) BHPs can indicate aerobic methane oxidation. Bacteriohopanehexol and 3-methyl bacteriohopanehexol can indicate nitrite-reducing methanotrophy. With the development of molecular biology, genomics and instrumental analysis technology, hopanoids will play a more important role in indicating marine C and N cycles.
尹美玲, 段丽琴, 宋金明, 袁华茂, 李学刚. 藿类生物标志物及其对海洋碳氮循环过程的指示[J]. 中国环境科学, 2022, 42(8): 3890-3902.
YIN Mei-ling, DUAN Li-qin, SONG Jin-ming, YUAN Hua-mao, LI Xue-gang. Hopanoids biomarkers and their indications in the marine carbon and nitrogen cycles. CHINA ENVIRONMENTAL SCIENCECE, 2022, 42(8): 3890-3902.
Hofreiter M, Collins M, Stewart J R. Ancient biomolecules in Quaternary palaeoecology[J]. Quaternary Science Reviews, 2012,33:1-13.
[2]
Rohmer M, Bouviernave P, Ourisson G. Distribution of hopanoid triterpenes in prokaryotes[J]. Journal of General Microbiology, 1984, 130:1137-1150.
[3]
尹美玲,段丽琴,宋金明,等.细菌藿多醇的环境指示作用及其在海洋生态环境重建中的应用[J]. 地质论评, 2020,66(6):1486-1498. Yin M L, Duan L Q, Song J M, et al. Environmental indication of Bacteriohopanepolyols and its application on eco-environmental reconstruction[J]. Geological Review, 2020,66(6):1486-1498.
[4]
Rush D, Damste J S S. Lipids as paleomarkers to constrain the marine nitrogen cycle[J]. Environmental Microbiology, 2017,19(6):2119-2132.
[5]
Sato S, Kudo F, Rohmer M, et al. Characterization of radical SAM adenosylhopane synthase, HpnH, which catalyzes the 5'-deoxyadenosyl radical addition to diploptene in the biosynthesis of C-35bacteriohopanepolyols[J]. Angewandte Chemie International Edition, 2020,59(1):237-241.
[6]
Belin B J, Busset N, Giraud E, et al. Hopanoid lipids:from membranes to plant-bacteria interactions[J]. Nature Reviews Microbiology, 2018, 16(5):304-315.
[7]
Sohlenkamp C, Geiger O. Bacterial membrane lipids:diversity in structures and pathways[J]. Fems Microbiology Reviews, 2016,40(1):133-159.
[8]
盛国英,卢鸿,廖晶,等.地质体中藿烷类新化合物研究进展[J]. 地球化学, 2019,48(5):421-446. Sheng F Y, Lu H, Liao J, et al. Advances on novel hopanoids present in geological bodies[J]. Geochimica, 2019,48(5):421-446.
[9]
Poralla K, Kannenberg E, Blume A. A glycolipid containing hopane isolated from the acidophilic, thermophilic bacillus acidocaldarius, has a cholesterol-like function in membranes[J]. Febs Letters, 1980,113(1):107-110.
[10]
Talbot H M, Sidgwick F R, Bischoff J, et al. Analysis of non-derivatised bacteriohopanepolyols by ultrahigh-performance liquid chromatography/tandem mass spectrometry[J]. Rapid Commun Mass Spectrom, 2016,30(19):2087-2098.
[11]
Talbot H M, Watson D F, Murrell J C, et al. Analysis of intact bacteriohopanepolyols from methanotrophic bacteria by reversed-phase high-performance liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry[J]. Journal of Chromatography A, 2001,921(2):175-185.
[12]
Summons R E, Jahnke L L, Hope J M, et al. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis[J]. Nature, 1999,400(6744):554-557.
[13]
Zundel M, Rohmer M. Prokaryotic triterpenoids. 3. The biosynthesis of 2-beta-methylhopanoids and 3-beta-methylhopanoids of Methylobacterium organophilum and Acetobacter pasteurianus ssp pasteurianus[J]. European Journal of Biochemistry, 1985,150(1):35-39.
[14]
van Winden J F, Talbot H M, de Vleeschouwer F, et al. Variation in methanotroph-related proxies in peat deposits from Misten Bog, Hautes-Fagnes, Belgium[J]. Organic Geochemistry, 2012,53:73-79.
[15]
van Winden J F, Talbot H M, Kip N, et al. Bacteriohopanepolyol signatures as markers for methanotrophic bacteria in peat moss[J]. Geochimica Et Cosmochimica Acta, 2012,77:52-61.
[16]
Matys E D, Sepulveda J, Pantoja S, et al. Bacteriohopanepolyols along redox gradients in the Humboldt Current System off northern Chile[J]. Geobiology, 2017,15(6):844-857.
[17]
Saenz J P, Wakeham S G, Eglinton T I, et al. New constraints on the provenance of hopanoids in the marine geologic record:Bacteriohopanepolyols in marine suboxic and anoxic environments[J]. Organic Geochemistry, 2011,42(11):1351-1362.
[18]
Elling F J, Hemingway J D, Evans T W, et al. Vitamin B12-dependent biosynthesis ties amplified 2-methylhopanoid production during oceanic anoxic events to nitrification[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020,117(52):32996-33004.
[19]
Rashby S E, Sessions A L, Summons R E, et al. Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(38):15099-15104.
[20]
Ricci J N, Michel A J, Newman D K. Phylogenetic analysis of HpnP reveals the origin of 2-methylhopanoid production in Alphaproteobacteria[J]. Geobiology, 2015,13(3):267-277.
[21]
Matys E D, Mackey T, Grettenberger C, et al. Bacteriohopanepolyols across environmental gradients in Lake Vanda, Antarctica[J]. Geobiology, 2019,17(3):308-319.
[22]
Schmerk C L, Bernards m A, Valvano M A. Hopanoid production is required for low-pH tolerance, antimicrobial resistance, and motility in Burkholderia cenocepacia[J]. Journal of Bacteriology, 2011,193(23):6712-6723.
[23]
Welander P V, Hunter R C, Zhang L C, et al. Hopanoids play a role in membrane integrity and pH homeostasis in Rhodopseudomonas palustris TIE-1[J]. Journal of Bacteriology, 2009,191(19):6145-6156.
[24]
Pan J J, Solbiati J O, Ramamoorthy G, et al. Biosynthesis of squalene from farnesyl diphosphate in bacteria:three steps catalyzed by three enzymes[J]. Acs Central Science, 2015,1(2):77-82.
[25]
Abe I. Enzymatic synthesis of cyclic triterpenes[J]. Natural Product Reports, 2007,24(6):1311-1331.
[26]
Hoshino T, Sato T. Squalene-hopene cyclase:catalytic mechanism and substrate recognition[J]. Chemical Communications, 2002,4:291-301.
[27]
Racolta S, Juhl P B, Sirim D, et al. The triterpene cyclase protein family:A systematic analysis[J]. Proteins-Structure Function and Bioinformatics, 2012,80(8):2009-2019.
[28]
Bradley A S, Pearson A, Saenz J P, et al. Adenosylhopane:The first intermediate in hopanoid side chain biosynthesis[J]. Organic Geochemistry, 2010,41(10):1075-1081.
[29]
Rohmer M. The biosynthesis of triterpenoids of the hopane series in the eubacteria-a mine of new enzyme reactions[J]. Pure and Applied Chemistry, 1993,65(6):1293-1298.
[30]
Broderick J B, Duffus B R, Duschene K S, et al. Radical S-adenosylmethionine enzymes[J]. Chemical Reviews, 2014,114(8):4229-4317.
[31]
Ricci J N, Coleman M L, Welander P V, et al. Diverse capacity for 2-methylhopanoid production correlates with a specific ecological niche[J]. Isme Journal, 2014,8(3):675-684.
[32]
Liu W, Sakr E, Schaeffer P, et al. Ribosylhopane, a novel bacterial hopanoid, as precursor of C-35bacteriohopanepolyols in Streptomyces coelicolor A3(2)[J]. Chembiochem, 2014,15(14):2156-2161.
[33]
Cornejo-Castillo F M, Zehr J P. Hopanoid lipids may facilitate aerobic nitrogen fixation in the ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019,116(37):18269-18271.
[34]
Schmerk C L, Welander P V, Hamad M A, et al. Elucidation of the Burkholderia cenocepacia hopanoid biosynthesis pathway uncovers functions for conserved proteins in hopanoid-producing bacteria[J]. Environmental Microbiology, 2015,17(3):735-750.
[35]
Kleemann G, Alskog G, Berry A M, et al. Lipid composition and nitrogenase activity of symbiotic Frankia (Alnus incana) in response to different oxygen concentrations[J]. Protoplasma, 1994,183(1-4):107-115.
[36]
Wu C H, Bialecka-Fornal M, Newman D K. Methylation at the C-2position of hopanoids increases rigidity in native bacterial membranes[J]. Elife, 2015,4:e05663.
[37]
Saenz J P, Grosser D, Bradley A S, et al. Hopanoids as functional analogues of cholesterol in bacterial membranes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(38):11971-11976.
[38]
Saenz J P, Sezgin E, Schwille P, et al. Functional convergence of hopanoids and sterols in membrane ordering[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(35):14236-14240.
[39]
Kulkarni G, Busset N, Molinaro A, et al. Specific hopanoid classes differentially affect free living and symbiotic states of Bradyrhizobium diazoefficiens[J]. Mbio, 2015,6(5):e01251-15.
[40]
Poralla K, Hartner T, Kannenberg E. Effect of temperature and pH on the hopanoid content of Bacillus acidocaldarius[J]. Fems Microbiology Letters, 1984,23(2-3):253-256.
[41]
Jahnke L L, Summons R E, Hope J M, et al. Carbon isotopic fractionation in lipids from methanotrophic bacteria II:The effects of physiology and environmental parameters on the biosynthesis and isotopic signatures of biomarkers[J]. Geochimica Et Cosmochimica Acta, 1999,63(1):79-93.
[42]
Gallon J R. N2fixation in phototrophs:adaptation to a specialized way of life[J]. Plant and Soil, 2001,230(1):39-48.
[43]
Martinez-Perez C, Mohr W, Loescher C R, et al. The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle[J]. Nature Microbiology, 2016,1(11):16163.
[44]
丁昌玲,孙军,顾海峰,等.海洋蓝藻固氮基因[J]. 海洋科学, 2008, (7):75-80. Ding C L, Sun J, Gu H F, Wang M, The nitrogen fixation gene in marine cyanobacteria[J]. Marine Sciences, 2008,(7):75-80.
[45]
Short S M, Jenkins B D, Zehr J P. Spatial and temporal distribution of two diazotrophic bacteria in the Chesapeake Bay[J]. Applied and Environmental Microbiology, 2004,70(4):2186-2192.
[46]
Talbot H M, Farrimond P. Bacterial populations recorded in diverse sedimentary biohopanoid distributions[J]. Organic Geochemistry, 2007,38(8):1212-1225.
[47]
张俊杰,邢磊,侯笛.蓝细菌生物标志物——2-甲基藿烷类化合物研究进展及其应用[J]. 地球环境学报, 2018,9(5):434-443. Zhang J J, Xing L, Hou D, Progress of research on the cyanobacterial biomarker——2-methylhopanoid and its application[J]. Journal of Earth Environment, 2018,9(5):434-443.
[48]
Zehr J P. Nitrogen fixation by marine cyanobacteria[J]. Trends in Microbiology, 2011,19(4):162-173.
[49]
Dumitrescu M, Brassell S C. Biogeochemical assessment of sources of organic matter and paleoproductivity during the early Aptian Oceanic Anoxic Event at Shatsky Rise, ODP Leg 198[J]. Organic Geochemistry, 2005,36(7):1002-1022.
[50]
Kasprak A H, Sepulveda J, Price-Waldman R, et al. Episodic photic zone euxinia in the northeastern Panthalassic Ocean during the end-Triassic extinction[J]. Geology, 2015,43(4):307-310.
[51]
Knani M H, Corpe W A, Rohmer M. Bacterial hopanoids from pink-pigmented facultative methylotrophs (PPFMs) and from green plant surfaces[J]. Microbiology (Reading), 1994,140(10):2755-2759.
[52]
Bravo J M, Perzl M, Hartner T, et al. Novel methylated triterpenoids of the gammacerane series from the nitrogen-fixing bacterium Bradyrhizobium japonicum USDA 110[J]. European Journal of Biochemistry, 2001,268(5):1323-1331.
[53]
Gallon J R. Reconciling the incompatible:N2fixation and O2[J]. New Phytologist, 1992,122(4):571-609.
[54]
Berman-Frank I, Lundgren P, Falkowski P. Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria[J]. Research in Microbiology, 2003,154(3):157-164.
[55]
Fay P. Oxygen relations of nitrogen-fixation in cyanobacteria[J]. Microbiological Reviews, 1992,56(2):340-373.
[56]
Poger D, Mark A E. The relative effect of sterols and hopanoids on lipid bilayers:when comparable is not identical[J]. Journal of Physical Chemistry B, 2013,117(50):16129-16140.
[57]
Munoz-Marin M D, Shilova I N, Shi T, et al. The transcriptional cycle is suited to daytime N2fixation in the unicellular cyanobacterium "Candidatus Atelocyanobacterium thalassa" (UCYN-A)[J]. Mbio, 2019,10(1):e02495-18.
[58]
Berry A M, Harriott O T, Moreau R A, et al. Hopanoid lipids compose the frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993,90(13):6091-6094.
[59]
Talbot H M, Summons R E, Jahnke L L, et al. Cyanobacterial bacteriohopanepolyol signatures from cultures and natural environmental settings[J]. Organic Geochemistry, 2008,39(2):232-263.
[60]
Handley L, Talbot H M, Cooke M P, et al. Bacteriohopanepolyols as tracers for continental and marine organic matter supply and phases of enhanced nitrogen cycling on the late Quaternary Congo deep sea fan[J]. Organic Geochemistry, 2010,41(9):910-914.
[61]
Herrmann D, Bisseret P, Connan J, et al. Relative configurations of carbapseudopentose moieties of hopanoids of the bacterium Zymomonas mobilis and the cyanobacterium "Anacystis montana"[J]. Tetrahedron Letters, 1996,37(11):1791-1794.
[62]
Bale N J, Hopmans E C, Zell C, et al. Long chain glycolipids with pentose head groups as biomarkers for marine endosymbiotic heterocystous cyanobacteria[J]. Organic Geochemistry, 2015,81:1-7.
[63]
Bauersachs T, Compaore J, Hopmans E C, et al. Distribution of heterocyst glycolipids in cyanobacteria[J]. Phytochemistry, 2009, 70(17/18):2034-2039.
[64]
Arrigo K R. Marine microorganisms and global nutrient cycles[J]. Nature, 2005,438(7064):122.
[65]
Sakata S, Hayes J M, Rohmer M, et al. Stable carbon isotopic compositions of lipids isolated from the ammonia oxidizing chemoautotroph Nitrosomonas europaea[J]. Organic Geochemistry, 2008,39(12):1725-1734.
[66]
Lipski A, Spieck E, Makolla A, et al. Fatty acid profiles of nitrite-oxidizing bacteria reflect their phylogenetic heterogeneity[J]. Systematic and Applied Microbiology, 2001,24(3):377-384.
[67]
Doxey A C, Kurtz D A, Lynch M D J, et al. Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production[J]. Isme Journal, 2015,9(2):461-471.
[68]
Kalvelage T, Jensen M M, Contreras S, et al. Oxygen sensitivity of anammox and coupled N-cycle processes in oxygen minimum zones[J]. Plos One, 2011,6(12):e29299.
[69]
Quan Z X, Rhee S K, Zuo J E, et al. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor[J]. Environmental Microbiology, 2008, 10(11):3130-3139.
[70]
Schmid M C, Risgaard-Petersen N, van de Vossenberg J, et al. Anaerobic ammonium-oxidizing bacteria in marine environments:widespread occurrence but low diversity[J]. Environmental Microbiology, 2007,9(6):1476-1484.
[71]
van Niftrik L, Geerts W J C, van Donselaar E G, et al. Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria:Cell plan, glycogen storage, and localization of cytochrome c proteins[J]. Journal of Bacteriology, 2008,190(2):708-717.
[72]
van de Graaf A A, de Bruijn P, Robertson L A, et al. Metabolic pathway of anaerobic ammonium oxidation on the basis of N-15studies in a fluidized bed reactor[J]. Microbiology-Sgm, 1997, 143:2415-2421.
[73]
Boumann H A, Longo M L, Stroeve P, et al. Biophysical properties of membrane lipids of anammox bacteria:I. Ladderane phospholipids form highly organized fluid membranes[J]. Biochimica Et Biophysica Acta-Biomembranes, 2009,1788(7):1444-1451.
[74]
Neumann S, Wessels H J C T, Rijpstra W I C, et al. Isolation and characterization of a prokaryotic cell organelle from the anammox bacterium Kuenenia stuttgartiensis[J]. Molecular Microbiology, 2014, 94(4):794-802.
[75]
Rush D, Jaeschke A, Hopmans E C, et al. Short chain ladderanes:Oxic biodegradation products of anammox lipids[J]. Geochimica Et Cosmochimica Acta, 2011,75(6):1662-1671.
[76]
Rush D, Hopmans E C, Wakeham S G, et al. Occurrence and distribution of ladderane oxidation products in different oceanic regimes[J]. Biogeosciences, 2012,9(7):2407-2418.
[77]
Rush D, Talbot H M, van der Meer M T J, et al. Biomarker evidence for the occurrence of anaerobic ammonium oxidation in the eastern Mediterranean Sea during Quaternary and Pliocene sapropel formation[J]. Biogeosciences, 2019,16(12):2467-2479.
[78]
尹美玲,段丽琴,宋金明,等.长江口邻近海域表层沉积物中的细菌藿多醇及对低氧区的响应判别[J]. 环境科学, 2021,42(3):1343-1353. Yin M L, Duan L Q, Song J M, et al. Response of bacteriohopanepolyols to hypoxic conditions in the surface sediments of the Yangtze Estuary and its adjacent areas[J]. Environmental Science, 2021,42(3):1343-1353.
[79]
Schwartz-Narbonne R, Schaeffer P, Hopmans E C, et al. A unique bacteriohopanetetrol stereoisomer of marine anammox[J]. Organic Geochemistry, 2020,143:103994.
[80]
Rush D, Damste J S S, Poulton S W, et al. Anaerobic ammonium-oxidising bacteria:A biological source of the bacteriohopanetetrol stereoisomer in marine sediments[J]. Geochimica Et Cosmochimica Acta, 2014,140:50-64.
[81]
Peiseler B, Rohmer M. Prokaryotic triterpenoids of the hopane series-bacteriohopanetetrols of new side-chain configuration from acetobacter species[J]. Journal of Chemical Research-S, 1992,0(9):298-299.
[82]
Rosa-Putra S, Nalin R, Domenach A M, et al. Novel hopanoids from Frankia spp. and related soil bacteria-Squalene cyclization and significance of geological biomarkers revisited[J]. European Journal of Biochemistry, 2001,268(15):4300-4306.
[83]
Yin M L, Duan L Q, Song J M, et al. Bacteriohopanepolyols signature in sediments of the East China Sea and its indications for hypoxia and organic matter sources[J]. Organic Geochemistry, 2021,158:104268.
[84]
Berner, R A. Burial of organic carbon and pyrite sulfur in the modern ocean:its geochemical and environmental significance[J]. American Journal of Science, 1982,282:451-473.
[85]
Cooke M P, Talbot H M, Farrimond P. Bacterial populations recorded in bacteriohopanepolyol distributions in soils from Northern England[J]. Organic Geochemistry, 2008,39(9):1347-1358.
[86]
Cooke M P, Talbot H M, Wagner T. Tracking soil organic carbon transport to continental margin sediments using soil-specific hopanoid biomarkers:A case study from the Congo fan (ODP site 1075)[J]. Organic Geochemistry, 2008,39(8):965-971.
[87]
Cooke M P, Van Dongen B E, Talbot H M, et al. Bacteriohopanepolyol biomarker composition of organic matter exported to the Arctic Ocean by seven of the major Arctic rivers[J]. Organic Geochemistry, 2009, 40(11):1151-1159.
[88]
Rethemeyer J, Schubotz F, Talbot H M, et al. Distribution of polar membrane lipids in permafrost soils and sediments of a small high Arctic catchment[J]. Organic Geochemistry, 2010,41:1130-1145.
[89]
Wagner T, Kallweit W, Talbot H M, et al. Microbial biomarkers support organic carbon transport from methane-rich Amazon wetlands to the shelf and deep sea fan during recent and glacial climate conditions[J]. Organic Geochemistry, 2014,67:85-98.
[90]
Zhu C, Talbot H M, Wagner T, et al. Distribution of hopanoids along a land to sea transect:Implications for microbial ecology and the use of hopanoids in environmental studies[J]. Limnology and Oceanography, 2011,56:1850-1865.
[91]
刘臻婧,肖启涛,胡正华,等.太湖竺山湾甲烷扩散通量及其驱动机[J]. 中国环境科学, 2022,42(1):393-401. Liu Z J, Xiao Q T, Hu Z H, et al. Methane diffusion flux and its driving factors in Zhushan Bay of Lake Taihu. China Environmental Science, 2022,42(1):393-401.
[92]
Cordova-Gonzalez A, Birgel D, Kappler A, et al. Variation of salinity and nitrogen concentration affects the pentacyclic triterpenoid inventory of the haloalkaliphilic aerobic methanotrophic bacterium Methylotuvimicrobium alcaliphilum[J]. Extremophiles, 2021,25(3):285-299.
[93]
Ghashghavi M, Jetten M S M, Luke C. Survey of methanotrophic diversity in various ecosystems by degenerate methane monooxygenase gene primers[J]. Amb Express, 2017,7:162.
[94]
Spencer-Jones C L, Wagner T, Talbot H M. A record of aerobic methane oxidation in tropical Africa over the last 2.5Ma[J]. Geochimica Et Cosmochimica Acta, 2017,218:27-39.
[95]
Welander P V, Summons R E. Discovery, taxonomic distribution, and phenotypic characterization of a gene required for 3-methylhopanoid production[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(32):12905-12910.
[96]
Hornibrook E R C, Longstaffe F J, Fyfe W S. Evolution of stable carbon isotope compositions for methane and carbon dioxide in freshwater wetlands and other anaerobic environments[J]. Geochimica Et Cosmochimica Acta, 2000,64(6):1013-1027.
[97]
Pancost R D, Steart D S, Handley L, et al. Increased terrestrial methane cycling at the Palaeocene-Eocene thermal maximum[J]. Nature, 2007,449(7160):332-335.
[98]
Kulkarni G, Wu C H, Newman D K. The general stress response factor EcfG regulates expression of the C-2hopanoid methylase HpnP in Rhodopseudomonas palustris TIE-1[J]. Journal of Bacteriology, 2013, 195(11):2490-2498.
[99]
Osborne K A, Gray N D, Sherry A, et al. Methanotroph-derived bacteriohopanepolyol signatures as a function of temperature related growth, survival, cell death and preservation in the geological record[J]. Environmental Microbiology Reports, 2017,9(5):492-500.
[100]
van Winden J F, Talbot H M, Reichart G-J, et al. Influence of temperature on the δ13C values and distribution of methanotroph-related hopanoids in Sphagnum-dominated peat bogs[J]. Geobiology, 2020,18(4):497-507.
[101]
Bale N J, Rijpstra W I C, Sahonero-Canavesi D X, et al. Fatty acid and hopanoid adaption to cold in the Methanotroph Methylovulum psychrotolerans[J]. Frontiers in Microbiology, 2019,10:589
[102]
Padilla C C, Bristow L A, Sarode N, et al. NC10bacteria in marine oxygen minimum zones[J]. Isme Journal, 2016,10(8):2067-2071.
[103]
Ettwig K F, Butler M K, Le Paslier D, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria[J]. Nature, 2010,464(7288):543-548.
[104]
Kool D M, Talbot H M, Rush D, et al. Rare bacteriohopanepolyols as markers for an autotrophic, intra-aerobic methanotroph[J]. Geochimica Et Cosmochimica Acta, 2014,136:114-125.