Pattern in changes of carbon and nitrogen stable isotopes of phytoplankton in Yilong Lake under the influence of human activities
WANG Xu1, GUO Wen2, WANG Ming-guo3, LI Ping1, WEN Wen-wen1, CHEN Li1, ZHENG Xin1, HUANG Lin-pei1, CHEN Guang-jie1
1. Yunnan Key Laboratory of Plateau Geographic Processes and Environmental Change, Faculty of Geography, Yunnan Normal University, Kunming 650500, China; 2. Meteorological Bureau of Fengning Manchu Autonomous County, Chengde 068350, China; 3. Yunnan Geological Mine Mapping Academy Co., Ltd, Kunming 650217, China
Abstract:From September 2020 to June 2022, a spatial investigation and seasonal analysis of water quality and carbon and nitrogen isotope signals of phytoplankton were carried out across 20 sites of Yilong Lake over 8seasons. The results showed that the distribution of δ13C signal of phytoplankton ranged from -28.98‰ to -22.32‰, showing lower values in wet year (-26.89‰±1.34‰) than in dry year (-25.30‰±0.97‰), and higher values in September than in other months. Meanwhile, the spatial distribution of δ13C signal showed higher values in western lake basin than those in central and eastern lake basins. The δ15N signal of phytoplankton varied from -0.28‰ to 10.25‰, and was significantly higher in wet year (6.28‰±1.07‰) than in dry year (2.78‰±1.55‰). Meanwhile, the values of phytoplankton δ15N were lower in fertilization season (June and December) compared to other seasons, and also higher in rainy season (September) and early dry season (December) than those in central and eastern lake basins. With increasing water volume in Yilong Lake, there was an increase in inorganic carbon input and a decrease in nutrient levels, resulting in a significant decline in phytoplankton δ13C signal. This may reflect the rapid response of phytoplankton δ13C signal linked to human activities such as water diversion and replenishment measures. Meanwhile, the lower δ15N values of phytoplankton are closely related to lake-water NH4+-N concentration, reflecting the role of nitrogen pollution from agricultural non-point sources (mainly ammonia fertilizer) in affecting phytoplankton absorption. However, the δ15N value of phytoplankton increased significantly with expanding water volume along with a replacement of chemical fertilizers by organic fertilizers during agricultural fertilization, a measure taken for mitigating lake eutrophication. The results of MixSIAR model showed that nutrient loading derived from agricultural non-point sources decreased from 88.4% in the dry year to 79.0% in the wet year, with the contribution of point source pollution increasing from 11.6% to 21.0%. Specifically, the relative contribution of chemical fertilizers decreased from 41.2% to 14.0%, the proportion of organic fertilizers increased from 47.2% to 65.0%. Therefore, pollution control measures, such as water diversion, hydrological replenishment and use of organic fertilizers, have largely reduced the lake-water nutrient concentrations, and this is also evidenced in an increase of the δ13C signal of phytoplankton due to an increased basin input of both the δ13C-depleted carbon and δ15N-enriched nitrogen. In all, our study highlights that lake management and restoration measures can significantly affect the isotopic signal and cycling porcesses of nutrients in the primary producers of lakes.
王旭, 郭雯, 王明果, 李平, 温雯雯, 陈丽, 郑昕, 黄林培, 陈光杰. 人类活动影响下异龙湖浮游植物碳氮稳定同位素变化特征[J]. 中国环境科学, 2023, 43(6): 3087-3099.
WANG Xu, GUO Wen, WANG Ming-guo, LI Ping, WEN Wen-wen, CHEN Li, ZHENG Xin, HUANG Lin-pei, CHEN Guang-jie. Pattern in changes of carbon and nitrogen stable isotopes of phytoplankton in Yilong Lake under the influence of human activities. CHINA ENVIRONMENTAL SCIENCECE, 2023, 43(6): 3087-3099.
董一凡,郑文秀,张晨雪,等.中国湖泊生态系统突变时空差异[J]. 湖泊科学, 2021,33(4):992-1005. Dong Y F, Zheng W X, Zhang C X, et al. Temporal and spatial variation of abrupt changes in lake ecosystems in China[J]. Journal of Lake Sciences, 2021,33(4):992-1005.
[2]
刘园园,陈光杰,施海彬,等.星云湖硅藻群落响应近现代人类活动与气候变化的过程[J]. 生态学报, 2016,36(10):3063-3073. Liu Y Y, Chen G J, Shi H B, et al. Responses of a diatom community to human activities and climate changes in Xingyun Lake[J]. Acta Ecologica Sinica, 2016,36(10):3063-3073.
[3]
Anderson N J, Bennion H, Lotter A F. Lake eutrophication and its implications for organic carbon sequestration in Europe[J]. Global Change Biology, 2014,20(9):2741-2751.
[4]
王 露,陈光杰,黄林培,等.近百年来湖泊有机碳与无机碳埋藏响应流域开发的协同变化——以石林喀斯特地区为例[J]. 湖泊科学, 2022,34(5):1751-1764. Wang L, Chen G J, Huang L P, et al. Synergistic changes of organic and inorganic carbon burial in response to basin development during the last century:A case study of Shilin Karst Area[J]. Journal of Lake Sciences, 2022,34(5):1751-1764.
[5]
张 涛,陈 丽,刘晓曦,等.云南中部和南部湖泊夏季浮游植物空间分布及其影响因子[J]. 生态学杂志, 2020,39(10):3350-3362. Zhang T, Chen L, Liu X X, et al. Spatial distribution and influencing factors of summer phytoplankton in lakes in central and southern Yunnan[J]. Chinese Journal of Ecology, 2020,39(10):3350-3362.
[6]
陈小锋,揣小明,杨柳燕.中国典型湖区湖泊富营养化现状、历史演变趋势及成因分析[J]. 生态与农村环境学报, 2014,30(4):438-443. Chen X F, Chuai X M, Yang L Y, et al. Status quo, historical evolution and causes of eutrophication in lakes in typical lake regions of China[J]. Journal of Ecology and Rural Environment, 2014,30(4):438-443.
[7]
Xiao J, Wang B, Qiu X L, et al. Interaction between carbon cycling and phytoplankton community succession in hydropower reservoirs:Evidence from stable carbon isotope analysis[J]. Science of The Total Environment, 2021,774:145141.
[8]
秦 珊,崔建升,申立娜,等.富营养化对湖泊消费者群落碳源和氮源的影响——以白洋淀为例[J]. 湖泊科学, 2020,32(6):1657-1670. Qin S, Cui J S, Shen L N, et al. Effects of eutrophication on carbon and nitrogen sources of lake consumer communities:A case study of Baiyangdian Lake[J]. Journal of Lake Science, 2020,32(6):1657-1670.
[9]
郭 雯,黄林培,王明果,等.抚仙湖草鱼、鱇浪白鱼不同组织的碳、氮元素含量和同位素分馏特征研究[J]. 中国环境科学, 2022, 42(1):345-355. Guo W, Huang L P, Wang M G, et al. Carbon and nitrogen contents and isotopic fractionation in different tissues of Ctenopharyngodon idellus and Anabarilius grahami in Fuxian Lake[J]. China Environmental Science, 2022,42(1):345-355.
[10]
Kaff J著,古滨河等译.湖沼学:内陆生生态系统[M]. 北京:高等教育出版社, 2011. Kaff J, Translated by Gu B H. Limnology:Inland ecological system[M]. Beijing:Higher Education Press, 2011.
[11]
陈家长,孟顺龙,尤 洋,等.太湖五里湖浮游植物群落结构特征分析[J]. 生态环境学报, 2009,18(4):1358-1367. Chen J C, Meng S L, You Y, et al. Characteristic of phytoplankton community in Lake Wuli, Lake Taihu[J]. Ecology and Environmental Sciences, 2009,18(4):1358-1367.
[12]
王 华,杨树平,房晟忠,等.滇池浮游植物群落特征及与环境因子的典范对应分析[J]. 中国环境科学, 2016,36(2):544-552. Wang H, Yang S P, Fang S Z, et al. Phytoplankton community characteristics and canonical correspondence with environmental factors in Dianchi Lake[J]. China Environmental Science, 2016,36(2):544-552.
[13]
邓建明,蔡永久,陈宇炜,等.洪湖浮游植物群落结构及其与环境因子的关系[J]. 湖泊科学, 2010,22(1):70-78. Deng J M, Cai Y J, Chen Y W, et al. Phytoplankton community structure and its relationship with environmental factors in Honghu Lake[J]. Journal of Lake Sciences, 2010,22(1):70-78.
[14]
林光辉.稳定同位素生态学[M]. 北京:高等教育出版社, 2013. Lin G H. Stable isotope ecology[M]. Beijing:Higher Education Press, 2013.
[15]
Oczkowski A, Markham E, Hanson A, et al. Carbon stable isotopes as indicators of coastal eutrophication[J]. Ecological Applications, 2014,24(3):457-466.
[16]
韩 琼,王宝利.浮游植物稳定碳同位素分馏机制及环境应用[J]. 生态学杂志, 2017,36(5):1436-1443. Han Q, Wang B L. Mechanisms of stable carbon isotope fractionation by phytoplankton and its environmental applications[J]. Chinese Journal of Ecology, 2017,36(5):1436-1443.
[17]
Brutemark A, Lindehoff E, Granéli E, et al. Carbon isotope signature variability among cultured microalgae:Influence of species, nutrients and growth[J]. Journal of Experimental Marine Biology and Ecology, 2009,372(1):98-105.
[18]
梁 红,黄林培,陈光杰,等.滇东湖泊水生植物和浮游生物碳、氮稳定同位素与元素组成特征[J]. 湖泊科学, 2018,30(5):1400-1412. Liang H, Huang L P, Chen G J, et al. Patterns of carbon and nitrogen stable isotopes and elemental composition of lake primary producers and zooplankton in Eastern Yunnan[J]. Journal of Lake Sciences, 2018,30(5):1400-1412.
[19]
Sugimoto R, Sato T, Yoshida T, et al. Using stable nitrogen isotopes to evaluate the relative importance of external and internal nitrogen loadings on phytoplankton production in a shallow eutrophic lake (Lake Mikata, Japan)[J]. Limnology and Oceanography, 2014,59(1):37-47.
[20]
Doi H, Kikuchi E, Shikano S, et al. Differences in nitrogen and carbon stable isotopes between planktonic and benthic microalgae[J]. Limnology, 2010,11(2):185-192.
[21]
陈子栋,黄林培,陈 丽,等.云南4个湖泊浮游生物碳、氮稳定同位素的季节变化及其影响因子[J]. 湖泊科学, 2021,33(3):761-773. Chen Z D, Huang L P, Chen L, et al. Seasonal variation and driving factors of carbon and nitrogen stable isotope values of plankton in four lakes of Yunnan Province[J]. Journal of Lake Sciences, 2021,33(3):761-773.
[22]
Xu J, Xie P, Qin J. Diel isotopic fluctuation in surface seston and its physiological and ecological implications[J]. Annales de Limnologie-International Journal of Limnology, 2008,44(3):197-201.
[23]
陈 蓉,王明果,黄林培,等.滇池浮游植物碳氮同位素时空分布特征及其影响因子分析[J]. 中国环境科学, 2022,42(2):843-853. Chen R, Wang M G, Huang L P, et al. Spatio-temporal distribution and influencing factors of stable carbon and nitrogen isotopes of phytoplankton in Dianchi Lake[J]. China Environmental Science, 2022,42(2):843-853.
[24]
Cole M L, Valiela I, Kroeger K D, et al. Assessment of a δ15N isotopic method to indicate anthropogenic eutrophication in aquatic ecosystems[J]. Journal of Environmental Quality, 2004,33(1):124-132.
[25]
林 琳,吴敬禄.太湖梅梁湾富营养化过程的同位素地球化学证据[J]. 中国科学, 2005,35(S2):55-62. Lin L, Wu J L. Isotopic geochemical evidence for eutrophication in Meiliang Bay, Taihu Lake[J]. Science in China, 2005,35(S2):55-62.
[26]
Rush S A, Paterson G, Johnson T B, et al. Long-term impacts of invasive species on a native top predator in a large lake system[J]. Freshwater Biology, 2012,57(11):2342-2355.
[27]
吴 汉,常凤琴,张虎才,等.异龙湖近百年来湖泊沉积物有机碳、氮稳定同位素变化及其环境指示意义[J]. 生态学杂志, 2020,39(8):2478-2487. Wu H, Chang F Q, Zhang H C, et al. Changes of organic C and N stable isotope and their environmental implication during the past 100years of Lake Yilong[J]. Chinese Journal of Ecology, 2020,39(8):2478-2487.
[28]
Hu K, Chen G J, Gregory-Eaves I, et al. Hydrological fluctuations modulate phototrophic responses to nutrient fertilization in a large and shallow lake of Southwest China[J]. Aquatic Sciences, 2019,81(2):37.
[29]
中国科学院南京地理与湖泊研究所.中国湖泊调查报告[M]. 北京:科学出版社, 2019. Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences. Lake survey report in China[M]. Beijing:Science Press, 2019.
[30]
刘 薇,宁 平,孙 鑫,等.异龙湖水质及水生生态系统演变趋势[J]. 环境科学与技术, 2018,41(S1):281-287. Liu W, Ning P, Sun X, et al. The evolution tendency of water quality and aquatic system in Lake Yilong[J]. Environmental Science & Technology, 2018,41(S1):281-287.
[31]
李 杰,陈 静,赵 磊.异龙湖藻类群落特征及环境响应关系[J]. 环境科学与技术, 2014,37(12O):56-61. Li J, Chen J, Zhao L. Phytoplankton population response of water environmental index in Yilong Lake[J]. Environmental Science & Technology, 2014,37(12O):56-61.
[32]
王振方,张 玮,杨 丽,等.异龙湖不同湖区浮游植物群落特征及其与环境因子的关系[J]. 环境科学, 2019,40(5):2249-2257. Wang Z F, Zhang W, Yang L, et al. Characteristics of phytoplankton community and its relationship with environmental factors in different regions of Yilong Lake, Yunnan Province, China[J]. Environmental Science, 2019,40(5):2249-2257.
[33]
国家环境保护总局.水和废水检测分析方法[M]. 北京:中国环境科学出版社, 2002. State Environmental Protection Administration. Methods for detection and analysis of water and wastewater[M]. Beijing:China Environmental Science Press, 2002.
[34]
Heaton T H E. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere:A review[J]. Chemical Geology:Isotope Geoscience section, 1986,59:87-102.
[35]
Wang B, Liu C Q, Peng X, et al. Mechanisms controlling the carbon stable isotope composition of phytoplankton in karst reservoirs[J]. Journal of Limnology, 2013,72(1):127-139.
[36]
温周瑞,徐 军,谢 平.太湖高等水生植物稳定碳、氮同位素特征[J]. 湖泊科学, 2016,28(1):163-169. Wen R Z, Xu J, Xie P. Carbon and nitrogen stable isotopes of macrophytes from Lake Taihu[J]. Journal of Lake Sciences, 2016, 28(1):163-169.
[37]
李 军,刘丛强,李龙波,等.硫酸侵蚀碳酸盐岩对长江河水DIC循环的影响[J]. 地球化学, 2010,39(4):305-313. Li J, Liu C Q, Li L B, et al. Effect of sulphuric acid erosion on DIC cycle of Changjiang River[J]. Geochimica, 2010,39(4):305-313.
[38]
李艳红,葛 刚,胡春华.鄱阳湖水体溶解无机碳的季节变化、输送及其来源[J]. 湖泊科学, 2022,34(2):528-537. Li Y H, Ge G, Hu C H. Seasonal variation, transport and source of dissolved inorganic carbon in Poyang Lake[J]. Journal of Lake Sciences, 2022,34(2):528-537.
[39]
李晓东,刘小龙,杨 周,等.嘉陵江梯级水库群溶解无机碳同位素的时空变化特征[J]. 上海大学学报, 2015,21(3):286-293. Li X D, Liu X L, Yang Z, et al. Spatial and seasonal variation of dissolved inorganic carbon isotope compositions in the cascade reservoirs of the Jialing River[J]. Journal of Shanghai University, 2015,21(3):286-293.
[40]
丁圣君,周忠发,石亮星,等.池武溪流域溶解无机碳特征及影响因素分析[J]. 环境科学与技术, 2021,44(6):27-34. Ding S J, Zhou Z F, Shi L X, et al. Analysis of dissolved inorganic carbon characteristics and influencing factors in Chiwu River[J]. Environmental Science & Technology, 2021,44(6):27-34.
[41]
华祖林,顾 莉,薛 欢,等.基于改善水质的浅水湖泊引调水模式的评价指标[J]. 湖泊科学, 2008,(5):623-629. Hua Z L, Gu L, Xue H, et al. Evaluation index of water diversion mode in shallow lake based on improving water quality[J]. Journal of Lake Sciences, 2008,20(5):623-629.
[42]
Laws E A, Popp B N, Bidigare R R, et al. Dependence of phytoplankton carbon isotopic composition on growth rate and[CO2)aq:Theoretical considerations and experimental results[J]. Geochimica et Cosmochimica Acta, 1995,59(6):1131-1138.
[43]
Hou W, Gu B, Lin Q, et al. Stable isotope composition of suspended particulate organic matter in twenty reservoirs from Guangdong, southern China:Implications for pelagic carbon and nitrogen cycling[J]. Water Research, 2013,47(11):3610-3623.
[44]
李夜光,李中奎,耿亚红,等.富营养化水体中N、P浓度对浮游植物生长繁殖速率和生物量的影响[J]. 生态学报, 2006,26(2):317-325. Li Y G, Li Z K, Gen Y H, et al. Effect of N, P concentration on growth rate and biomass of phytoplankton in eutrophical water[J]. Acta ecologica sinica, 2006,26(2):317-325.
[45]
吴 攀,邓建明,秦伯强,等.水温和营养盐增加对太湖冬、春季节藻类生长的影响[J]. 环境科学研究, 2013,26(10):1064-1071. Wu P, Deng J M, Qin B Q, et al. Effects of enhanced water temperature and nutrient concentration on algal growth in winter and spring season in Lake Taihu, China[J]. Research of Environmental Sciences, 2013,26(10):1064-1071.
[46]
赵巧华,孙国栋,王健健,等.水温、光能对春季太湖藻类生长的耦合影响[J]. 湖泊科学, 2018,30(2):385-393. Zhao Q H, Sun G D, Wang J J, et al. Coupling effect of water temperature and light energy on the algal growth in Lake Taihu[J]. Journal of Lake Sciences, 2018,30(2):385-393.
[47]
Tamelander T, Kivimäe C, Bellerby R G J, et al. Base-line variations in stable isotope values in an Arctic marine ecosystem:effects of carbon and nitrogen uptake by phytoplankton[J]. Hydrobiologia, 2009,630(1):63-73.
[48]
de Kluijver A, Schoon P L, Downing J A, et al. Stable carbon isotope biogeochemistry of lakes along a trophic gradient[J]. Biogeosciences, 2014,11(22):6265-6276.
[49]
何宗健,蔡静静,倪兆奎,等.洱海不同途径氮来源季节性特征及对水体氮贡献[J]. 环境科学学报, 2018,38(5):1939-1948. He Z J, Cai J J, Ni Z K, et al. Seasonal characteristics of nitrogen sources from different ways and its contribution to water nitrogen in Lake Erhai[J]. Acta Scientiae Circumstantiae, 2018,38(5):1939-1948.
[50]
周 涛,李正魁,冯露露.氨氮和硝氮在太湖水华自维持中的不同作用[J]. 中国环境科学, 2013,33(2):305-311. Zhou T, Li Z K, Feng L L. Different effects of ammonia nitrogen and nitrate nitrogen on bloom self-maintenance in Taihu Lake[J]. China Environmental Science, 2013,33(2):305-311.
[51]
Fawcett S E, Lomas M W, Casey J R, et al. Assimilation of upwelled nitrate by small eukaryotes in the Sargasso Sea[J]. Nature Geoscience, 2011,4(10):717-722.
[52]
高祥照,马文奇,杜 森,等.我国施肥中存在问题的分析[J]. 土壤通报, 2001,32(6):258-261. Gao X Z, Ma W Q, Du S, et al. Analysis of problems in fertilizing in our country[J]. Chinese Journal of Soil Science, 2001,32(6):258-261.
[53]
王圣瑞,倪兆奎,吴 涛,等.异龙湖水环境[M]. 北京:科学出版社, 2022. Wang S R, Ni Z K, Wu T, et al. Water environment of Yilong Lake[M]. Beijing:Science Press, 2022.
[54]
朱兆良.中国土壤氮素研究[J]. 土壤学报, 2008,45(5):778-783. Zhu Z L. Study on soil nitrogen in China[J]. Acta Pedologica Sinica, 2008,45(5):778-783.
[55]
全为民,严力蛟.农业面源污染对水体富营养化的影响及其防治措施[J]. 生态学报, 2002,(3):291-299. Quan W M, Yan L J. Effects of agricultural non-point source pollution on water eutrophication and its control measures[J]. Acta Ecologica Sinica, 2002,(3):291-299.
[56]
杨 柳,刘正文.基于15N稳定同位素示踪技术的太湖梅梁湾浮游植物群落氮吸收动力学研究[J]. 湖泊科学, 2019,31(2):449-457. Yang L, Liu Z W. Nitrogen uptake kinetics of phytoplankton community in Meiliang Bay, Taihu Lake based on 15N stable isotope tracer technique[J]. Journal of Lake Sciences, 2019,31(2):449-457.
[57]
张 靖,朱 潇,沈健林,等.生物有机肥与化肥配施对稻田氨挥发的影响[J]. 中国生态农业学报, 2022,30(1):15-25. Zhang J, Zhu X, Shen J L, et al. Effects of combined application of biological organic fertilizer and chemical fertilizer on ammonia volatilization in paddy fields[J]. Chinese Journal of Eco-Agriculture, 2022,30(1):15-25.
[58]
马凡凡,邢素林,甘曼琴,等.有机肥替代化肥对水稻产量、土壤肥力及农田氮磷流失的影响[J]. 作物杂志, 2019,5:89-96. Ma F F, Xing S L, Gan M Q, et al. Effects of organic fertilizer replacement on rice yield, soil fertility and nitrogen and phosphorus loss in farmland[J]. Chinese Journal of Crops, 2019,5:89-96.
[59]
梁 越,肖化云,刘小真,等.碳氮稳定同位素示踪鄱阳湖流域蚌湖丰水期的氮污染[J]. 湖泊科学, 2018,30(4):957-966. Liang Y, Xiao H Y, Liu X Z, et al. Carbon and nitrogen stable isotopes tracing nitrogen pollution in major flooding season in Lake Bang, Lake Poyang Basin[J]. Journal of Lake Sciences, 2018,30(4):957-966.