The sources and seasonal variation characteristics of n-alkanes in suspended particulate matter in Fuxian Lake
YUAN Hong-xiang1, SUN Hui-ling1, DUAN li-zeng2, ZHANG Hu-cai2
1. Yunnan Key Laboratory of Plateau Geographical Processes and Environmental Change, Faculty of Geography, Yunnan Normal University, Kunming 650500, China; 2. Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Resources, Environment and Earth Sciences, Yunnan University, Kunming 650504, China
Abstract:In order to investigate the sources and spatiotemporal variation characteristics of n-alkanes in organic matter in Fuxian Lake, the distribution characteristics, biological sources and seasonal variations of suspended particulate matter in water columns of Fuxian Lake from April 2016 to March 2017 were studied. The vertical distribution of n-alkanes demonstrated the relative abundance of n-alkanes above the thermocline was higher than that below the thermocline. The maximum concentration of n-alkanes occured in ~20m depth. The relative abundance of n-alkanes in water columns was weakly affected by sediment resuspension. The obvious seasonal fluctuation in n-alkanes with the highest values in October and April can be found. Furthermore, the seasonal variation trends of n-25, n-27, n-29 alkanes were consistent with that of phytoplankton biomass, which illustrated that the phytoplankton was the main source of n-alkanes in water columns of Fuxian Lake. Water temperature was one of the key factors to limit the spatial and temporal distribution of n-alkanes in water columns of Fuxian Lake. All the input from the phytoplanktons, surface soil and submerged plants played an important role for the high abundance of C29in the surface sediments. The n-alkanes (C31 and C23) in the sediments of Fuxian Lake could effectively indicate the input of terrestrial plants and submerged plants. The results were good foundation of paleo-environmental reconstruction in down core sediments based on n-alkanes in Fuxian Lake.
Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 1994,114(3/4):289-302.
[2]
Ficken K J, Li B, Swain D L,et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J]. OrganicGeochemistry, 2000,31(7/8):745-749.
[3]
沈贝贝,吴敬禄,曾海鳌,等.网湖沉积物正构烷烃分布特征及其记录的环境变化[J]. 环境科学, 2017,38(9):3682-3688. Shen B B, WU J L, Zeng H A, et al. Distribution of n-alkanes from lake wanghu sediments in relation to environmental changes[J]. Environmental Science, 2017,38(9):3682-3688.
[4]
Meyers P A. Applications of organic geochemistry to paleolimnological reconstructions:a summary of examples from the Laurentian Great lakes[J]. Organic Geochemistry, 2003,34(4):261-289.
[5]
Sarkar S, Wilkes H, Prasad S, et al. Spatial heterogeneity in lipid biomarker distributions in the catchment and sediments of a crater lake in Central India[J]. Organic Geochemistry, 2014,66(1):125-136.
[6]
Meyers P A, Ishiwatari R. Lacustrine organic geochemistry——an overview of indicators of organic matter sources and diagenesis in lake sediments[J]. Organic Geochemistry, 1993,20(7):867-900.
[7]
Cripps G C, Clarke A. Seasonal variation in the biochemical composition of particulate material collected by sediment traps at Signy Island, Antarctica[J]. Polar Biology, 1998,20(6):414-423.
[8]
Schoellhamer D H, Mumley T E, Leatherbarrow J E,et al. Suspended sediment and sediment-associated contaminants in San Francisco Bay[J]. Environmental Research, 2007,105(1):119-131.
[9]
Wang J, Hilton R G, Jin Z, et al. The isotopic composition and fluxes of particulate organic carbon exported from the eastern margin of the Tibetan Plateau[J]. Geochimica et Cosmochimica Acta, 2019,252(1):1-15.
[10]
Smith J C, Galy A, Hovius N, et al. Runoff-driven export of particulate organic carbon from soil in temperate forested uplands[J]. Earth and Planetary Science Letters, 2013,365(1):198-208.
[11]
Adams J L, Tipping E, Bryant C L, et al. Aged riverine particulate organic carbon in four UK catchments[J]. Science of The Total Environment, 2015,536(1):648-654.
[12]
冯精兰,席楠楠,张飞,等.黄河河南段水体中正构烷烃的分布特征与来源解析[J]. 环境科学, 2016,37(3):893-899. Fen J L, Xi N N, Zhang F, et al. Distribution characteristics and source apportionment of n-alkanes in water from Yellow River in Henan Section[J]. Environmental Science, 2016,37(3):893-899.
[13]
魏星,戚艳平,吴莹.长江口徐六泾颗粒态正构烷烃的月变化组成特征及来源解析[J]. 地球与环境, 2013,41(6):605-611. Wei X, Qi Y P, Wu Y. Monthly changes of the composition and the source apportionment of particulate organic matter n-alkanes in Xuliujing, Changjiang Estuary[J]. Earth and Environment, 2013,41(6):605-611.
[14]
张倩,宋金明,彭全材,等.胶州湾表层海水中的正构烷烃及其来源解析[J]. 环境科学, 2017,38(7):2763-2772. Zhang Q, Song J M, Peng Q C, et al. Distribution and sources of n-alkanes in surface seawater of Jiaozhou Bay[J]. Environmental Science, 2017,38(7):2763-2772.
[15]
中国科学院南京地理与湖泊研究所.中国湖泊调查报告[M]. 北京:科学出版社, 2019:16-17. Nanjing Institute of Geography and Limnology, Chinese academy of sciences. Chinese lake survey report[M]. Beijing:Science Press, 2019:16-17.
[16]
王小雷,杨浩,丁兆运,等.云南抚仙湖近现代沉积速率变化研究[J]. 地理学报, 2011,66(11):1551-1561. Wang X L, Yang H, Ding Z Y, et al. Modern sedimentation rates of fuxian lake by 210Pb and 137Cs dating[J]. Acta Geographica Sinica, 2011,66(11):1551-1561.
[17]
王志远,谢树成,陈发虎.临夏塬堡黄土地层S1古土壤中的正构烷烃及其古植被意义[J]. 第四纪研究, 2004,24(4):231-235. Wang Z Y, Xie S C, Chen F H. N-alkane distribution as indicator for paleo-vegetation an example from Yuanbao S1paleosol in Linxia, Gansu Province[J]. Quaternary Sciences, 2004,24(4):231-235.
[18]
梁红,黄林培,陈光杰,等.滇东湖泊水生植物和浮游生物碳、氮稳定同位素与元素组成特征[J]. 湖泊科学, 2018,30(5):226-238. Liang H, Huang L P, Chen G J, et al. Patterns of carbon and nitrogen stable isotopes and elemental composition of lake primary producers and zooplankton in Eastern Yunnan[J]. Journal of Lake Sciences, 2018,30(5):226-238.
[19]
文新宇,张虎才,常凤琴,等.泸沽湖水体垂直断面季节性分层[J]. 地球科学进展, 2016,31(8):858-869. Wen X Y, Zhang H C, Chang F Q, et al. Seasonal stratification characteristics of vertical profiles of water body in Lake Lugu[J]. Advances in Earth Science, 2016,31(8):858-869.
[20]
莫美仙,张世涛,叶许春,等.云南高原湖泊滇池和星云湖pH值特征及其影响因素分析[J]. 农业环境科学学报, 2007,(1):269-273. Mo M X, Zhang S T, Ye X C, et al. PH characters and influencing factors in dianchi and Xingyun Lakes of Yunnan Plateau[J]. Journal of Agro-Environment Science, 2007,(1):269-273.
[21]
龙爱民,陈绍勇,周伟华,等.南海北部秋季营养盐、溶解氧、pH值和叶绿素a分布特征及相互关系[J]. 海洋通报, 2006,25(5):9-16. Long A M, Chen S Y, Zhou W H, et al. Distribution of Macro-nutrients, dissolved oxygen, pH and Chl a and their relationships in Northern South China Sea[J]. Marine Science Bulletin, 2006,25(5):9-16.
[22]
卢蓓.湖泊沉水植物适应水体光衰减的初步研究[D]. 武汉:中国科学院大学(中国科学院武汉植物园), 2017:1-65. Lu B. Primary research on adaptation to underwater lightattenuation by submerged macrophytes in lakes[D]. Wuhan Botanical Garden,Chinese Academy of SciencesNovember, 2017:1-65.
[23]
吉正元,刘绍俊.抚仙湖浮游植物群落结构、影响因子及水质评价[J]. 中国环境监测, 2019,35(4):67-77. Ji Z Y, Liu S J. Phytoplankton community structure, related influencing factors and the evaluation of water quality in the Fuxian Lake[J]. Environmental Monitoring in China, 2019,35(4):67-77.
[24]
劳齐斌,卞培旺,曾珍,等.湖光岩玛珥湖溶解氧的时空分布特征及其影响因素[J]. 矿物岩石地球化学通报, 2018,37(4):714-723. Lao Q B, Bian P w, Zeng Z, et al. Spatial-temporal distributions of dissolved oxygen and its affecting factors in Huguangyan Maar Lake[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(4):714-723.
[25]
Mead R, Xu Y P, Chong J D, et al. Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes[J]. Organic Geochemistry, 2005,36(3):363-370.
[26]
李存林,马素萍,常福宣,等.青藏高原北部土壤正构烷烃氢同位素及物源意义[J]. 中国环境科学, 2019,39(5):2095-2105. Li C L, Ma S P, Chang F X, et al. N-alkanes hydrogen isotopes in soil from the northern region, Tibetan Plateau:implications for sources of organic matter[J]. China Environmental Science, 2019,39(5):2095-2105.
[27]
Li G Y, Li L, Torozo R,et al. Microbial production of long-chain n-alkanes:implication for interpreting sedimentary leaf wax signals[J]. Organic Geochemistry, 2018,115(1):24-31.
[28]
朱纯,潘建明,卢冰,等.长江、老黄河口及东海陆架沉积有机质物源指标及有机碳的沉积环境[J]. 海洋学研究, 2005,(5):36-46. Zhu C, Pan J M, Lu B, et al. Source indication and accumulative effect of sedimentary organic matter in the Changjiang Estuary, the old Huanghe River subaqueous delta and the East China Sea shelf[J]. Journal of Marine Sciences, 2005,(5):36-46.
[29]
刘晓曦,陈丽,蒋伊能,等.抚仙湖浮游植物群落时空变化特征及其与环境因子的关系[J]. 湖泊科学, 2020,32(3):793-803. Liu X X, Chen L, Jiang Y N, et al. Spatiotemporal variation of phytoplankton communities and their relationship with environmental factors in Lake Fuxian[J]. Journal of Lake Sciences, 2020,32(3):793-803.
[30]
牛远,孔祥虹,余辉,等.抚仙湖夏季热分层时期浮游植物空间分布特征[J]. 生态学杂志, 2016,35(7):1865-1871. Niu Y, Kong X H, Yu H, et al. Spatial distribution of phytoplankton community during summer stratification in Lake Fuxian[J]. Chinese Journal of Ecology, 2016,35(7):1865-1871.
[31]
潘继征,熊飞,李文朝,等.抚仙湖浮游植物群落结构、分布及其影响因子[J]. 生态学报, 2009,29(10):5376-5385. Pan J Z, Xiong F, Li W C, et al. Structure, distribution and its impact factors of phytoplankton community in Fuxian Lake[J]. Chinese Journal of Ecology, 2009,29(10):5376-5385.
[32]
Bloesch J. Mechanisms, Measurement and importance of sediment resuspension in lakes[J]. Marine & Freshwater Research, 1995,46(1):295-304.
[33]
王毛兰,赖建平,胡珂图,等.鄱阳湖表层沉积物有机碳、氮同位素特征及其来源分析[J]. 中国环境科学, 2014,34(4):1019-1025. Wang M L, Lai J P, Hu K T, et al. Compositions and sources of stable organic carbon and nitrogen isotopes in surface sediments of Poyang Lake[J]. China Environmental Science, 2014,34(4):1019-1025.
[34]
赖珊,万宏滨,唐芳,等.抚仙湖沉积物有机碳埋藏特征及来源解析[J]. 中国环境科学, 2020,40(3):1246-1256. Lai S, Wan H B, Tang F, et al. Characteristics and source analysis of organic carbon buried in sediments of Fuxian Lake[J]. China Environmental Science, 2020,40(3):1246-1256.
[35]
Lepš J, Šmilauer P. Multivariate analysis of ecological data using CANOCO 5[M]. New York:Cambridge University Press,2003.
[36]
周彦锋,宋江腾,刘凯,等.怀洪新河浮游植物群落结构与水环境因子的关系研究[J]. 生态科学, 2017,36(1):35-42. Zhou Y F, Song J T, Liu K, et al. Study on the relation between phytoplankton community structure and aquatic environment factors in Huaihong River[J]. Ecological Science, 2017,36(1):35-42.