Greenhouse gases emissions in high polluted water and its restoration
CHEN Cheng1, YANG Zheng-jian1,2, WANG Cong-feng1, GUO Xiao-juan1, TANG Jin-yun2
1. China Three Gorges University, Hubei Field Observation and Scientific Research Station for Water Ecosystem in Three Gorges Reservoirs, Yichang 443002, China; 2. Hubei University of Technology, Hubei Key Laboratory of Ecological Restoration of River-lakes and Algal Utilization, Wuhan 430068, China
Abstract:In order to analyze the greenhouse gases emissions in high polluted water, three experimental enclosures were set as:pollution intercepted and ecological restoration treated enclosure (W1), pollution intercepted enclosure (W2) and no treatment enclosure (W3). The CO2, CH4 and N2O diffusion fluxes in W1 were (5671.9±1189.5) μmol/(m2·h), (39.2±10.1) μmol/(m2·h) and (4.2±2.2) μmol/(m2·h), respectively, and contributed for 76.51%, 6.54% and 16.95% of the total CO2 equivalent emission. In the pollution intercepted enclosure W2, the CO2, CH4 and N2O diffusion fluxes were (1139.3±1169.6) μmol/(m2·h), (102.1±35.6) μmol/(m2·h) and (20.0±14.1) μmol/(m2·h), and contributed for 13.64%, 15.12% and 71.24% of the total CO2 equivalent emission. In no treatment enclosure W3, the CO2, CH4 and N2O diffusion fluxes were (9140.3±256.4) μmol/(m2·h), (1126.8±215.1) μmol/(m2·h) and (1.8±1.7) μmol/(m2·h), and contributed for 38.74%, 59.04% and 2.22% of the total CO2 equivalent emission. The total greenhouse gases emission in the experimental enclosures sorted as:no treatment high polluted water > pollution intercepted enclosure > pollution intercepted and ecological restoration treated enclosure. Organic matter degradation in no treatment enclosure W3 resulted in anoxic and high CH4 and CO2 emission. In pollution intercepted enclosure W2, eutrophication and algal bloom occurred. Algae photosynthesis consumed CO2 and released N2O, therefor N2O was the main contributor (71.24%) to the total emission. The high DO in the pollution intercepted and ecological restoration enclosure (W1) inhibited the production of CH4 and accelerated its oxidation, and the inhibition of denitrification resulted in low N2O, which reduced the total greenhouse gases emissions to the atmosphere.
陈成, 杨正健, 王从锋, 郭小娟, 唐金云. 小微黑臭水体修复过程中温室气体排放特征[J]. 中国环境科学, 2023, 43(8): 4211-4218.
CHEN Cheng, YANG Zheng-jian, WANG Cong-feng, GUO Xiao-juan, TANG Jin-yun. Greenhouse gases emissions in high polluted water and its restoration. CHINA ENVIRONMENTAL SCIENCECE, 2023, 43(8): 4211-4218.
杨娜,王趁义,徐园园,等.黑臭小微水体治理技术的研究现状与发展趋势[J].工业水处理, 2021,41(5):15-21. Yang N, Wang C Y, Xu Y Y, et al. Research status and development trend of the treatment technology of black odor small and micro-water body[J]. Industrial Water Treatment, 2021,41(5):15-21.
[2]
于玉彬,黄勇.城市河流黑臭原因及机理的研究进展[J].环境科技, 2010,23(S2):111-114. Yu Y B, Hang Y. Review of Reason and Mechanism of Black and Stink in Urban Rivers[J]. Environmental Science and Technology, 2010,23(S2):111-114.
[3]
古小治,张启超,孙淑雲,等.富氧-缺氧过程对氧气分布及交换过程影响[J].中国环境科学, 2015,35(5):1495-1501. Gu X Z, Zhang Q C, Sun S Y, et al. Influence of anaerobic and aerobic processes on bottom oxygen dynamic and exchange process across sediment-water interface[J]. China Environmental Science, 2015, 35(5):1495-1501.
[4]
刘婷婷,王晓锋,袁兴中,等.快速城市化区河流温室气体排放的时空特征及驱动因素[J].环境科学, 2019,40(6):2827-2839. Liu T T, Wang X F, Yuan X Z, et al. Spatial-temporal characteristics and driving factors of greenhouse gas emissions from rivers in a rapidly urbanizing area[J]. Environmental Science, 2019,40(6):2827-2839.
[5]
廖伟伶,黄健盛,丁健刚,等.我国黑臭水体污染与修复技术研究现状[J].长江科学院院报, 2017,34(11):153-158. Liao W L, Huang J S, Ding J G, et al. Pollution status and remediation technologies of malodorous black water body in China[J]. Journal of Yangtze River Scientific Research Institute, 2017,34(11):153-158.
[6]
Xiao S B, Liu L, Wang W, et al. A Fast-Response Automated Gas Equilibrator (FaRAGE) for continuous in situ measurement of CH4 and CO2 dissolved in water[J]. Hydrology and Earth System Sciences, 2020,24(7):3871-3880.
[7]
魏复盛.水和废水监测分析方法.[M]. 4版.北京:中国环境科学出版社, 2002. Wei F S. Water and wastewater monitoring and analysis method.(Fourth Edition)[M]. Beijing:China Environmental Science Press, 2002.
[8]
Wanninkhof R. Relationship between wind speed and gas exchange over the ocean revisited:Gas exchange and wind speed over the ocean[J]. Limnology and Oceanography:Methods, 2014,12(6):351-362.
[9]
卞航.句容水库农业小流域水体中CO2、CH4、N2O浓度与通量研究[D].南京信息工程大学, 2018. Bian H. Research on the concentration and flux of CO2、CH4、N2O in agricultural watershed of Jurong reservoir[D]. Nanjing University of Information Science & Technology, 2018.
[10]
Weiss R F, Price B A. Nitrous oxide solubility in water and seawater[J]. Marine Chemistry, 1980,8(4):347-359.
[11]
Wiesenburg D A, Guinasso N L. Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water[J]. Journal of Chemical & Engineering Data, 1979,24(4):356-360.
[12]
IPCC. Climate Change 2013-The physical science basis:Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change[R]. UK:Cambridge University Press, 2013.
[13]
林培.《城市黑臭水体整治工作指南》解读[J].建设科技, 2015(18):14-15,21. Lin P. Interpretation of the"Guidelines for the treatment of urban black and odorous water bodies"[J]. Construction Science and Technology, 2015(18):14-15,21.
[14]
王刚.国内外污泥处理处置技术现状与发展趋势[J].环境工程, 2013,31(S1):530-533,593. Wang G. Present status of treatment and disposal techniques of sludge at home and abroad[J]. Environmental Engineering, 2013,31(S1):530-533,593.
[15]
翟俊,马宏璞,陈忠礼,等.湿地甲烷厌氧氧化的重要性和机制综述[J].中国环境科学, 2017,37(9):3506-3514. Zhai J, Ma H P, Chen Z L, et al. Review on the importance and mechanisms of anaerobic oxidation of methane in wetlands[J]. China Environmental Science, 2017,37(9):3506-3514.
[16]
胡晓康,昝逢宇,常素云,等.天津市海河温室气体排放特征与影响因素研究[J].生态环境学报, 2021,30(4):771-780. Hu X K, Zan F Y, Chang S Y, et al. Patterns and influencing factors of greenhouse gas emission from Haihe river in Tianjin[J]. Ecology and Environmental Sciences, 2021,30(4):771-780.
[17]
白玉涛,周玉,赵吉.内蒙古高原干涸湖泊反硝化及甲烷氧化细菌的群落分析[J].中国环境科学, 2012,32(7):1293-1301. Bai Y T, Zhou Y, Zhao J. Community structures of denitrifying bacteria and methanotrophs in wetland soils of dry-up lake in the Inner Mongolia Plateau[J]. China Environmental Science, 2012, 32(7):1293-1301.
[18]
Whitfield C J, Aherne J, Baulch H M. Controls on greenhouse gas concentrations in polymictic headwater lakes in Ireland[J]. Science of The Total Environment, 2011,410-411:217-225.
[19]
方家琪.城市典型污染河道温室气体排放特征及影响因素研究[D].南京:南京师范大学, 2021. Fang J Q. Greenhouse gas emission characteristics and influencing factors of urban typical polluted river in city[D]. Nanjing:Nanjing Normal University, 2021.
[20]
李东霖,韦海玲.河池市龙滩水库水质及富营养化分析[J].广西水利水电, 2021(6):10-13,26. Li D L, Wei H L. Water quality and eutrophication analysis of Longtan Reservoir in Hechi City[J]. Guangxi Water Resources & Hydropower Engineering, 2021(6):10-13,26.
[21]
荀凡,杜先,陈新芳,等.秋季连续打捞蓝藻对水-气界面温室气体通量的影响[J].湖泊科学, 2020,32(6):1707-1722. Xun F, Du X, Chen X F, et al. Effects of continuous cyanobacterial salvaging on greenhouse gas flux on water-air interface in autumn[J]. Journal of Lake Sciences, 2020,32(6):1707-1722.
[22]
邓焕广,张智博,刘涛,等.城市湖泊不同水生植被区水体温室气体溶存浓度及其影响因素[J].湖泊科学, 2019,31(4):1055-1063. Deng H G, Zhang Z B, Liu T, et al. Dissolved greenhouse gas concentrations and the influencing factors in different vegetation zones of an urban lake[J]. Journal of Lake Sciences, 2019,31(4):1055-1063.
[23]
Burlacot A, Richaud P, Gosset A, et al. Algal photosynthesis converts nitric oxide into nitrous oxide[J]. Proceedings of the National Academy of Sciences, 2020,117(5):2704-2709.
[24]
Hu B, Wang D, Zhou J, et al. Greenhouse gases emission from the sewage draining rivers[J]. Science of The Total Environment, 2018, 612:1454-1462.
[25]
杨科,刘丽香,韩永伟,等.水生植物净化模拟富营养水体过程中温室气体动态变化及影响因素初探[J/OL].中国环境科学, 10.19674/j.cnki.issn1000-6923.20230413.001. Yang K, Liu L X, Han Y W, et al. Preliminary study on dynamic changes and influencing factors of greenhouse gases during the purification of simulated eutrophic water by aquatic plants[J/OL]. China Environmental Science, 10.19674/j.cnki.issn1000-6923. 20230413.001.
[26]
Jerman V, Metje M, Mandić-Mulec I, et al. Wetland restoration and methanogenesis:the activity of microbial populations and competition for substrates at different temperatures[J]. Biogeosciences, 2009, 6(6):1127-1138.
[27]
韩璐,李庆龙,曾萍,等.长江流域典型城市河段黑臭水体生态整治案例分析[J].环境工程技术学报, 2022,12(2):546-552. Han L, Li Q L, Zeng P, et al. Case study on water ecological regulation of black and odorous water in typical urban sections of the Yangtze River Basin[J]. Journal of Environmental Engineering Technology, 2022,12(2):546-552.
[28]
陈政阳.曝气强化水平潜流人工湿地修复黑臭水体的试验研究[D].成都:成都理工大学, 2018. Chen Z Y. Experimental study on remediation of black-odorous water by horizontal subsurface flow constructed wetland with aeration[D]. Chengdu:Chengdu University Of Technology, 2018.
[29]
石稳民,黄文海,罗金学,等.基于生态修复的河湖环保清淤关键问题研究[J].环境科学与技术, 2019,42(S2):125-131. Shi W M, Huang W H, Luo J X, et al. Key issues of environmental dredging of river and lake sediments based on ecological restoration[J]. Environmental Science & Technology, 2019,42(S2):125-131.
[30]
刘晓玲,徐瑶瑶,宋晨,等.城市黑臭水体治理技术及措施分析[J].环境工程学报, 2019,13(3):519-529. Liu X L, Xu Y Y, Song C, et al. Analysis of treatment technologies and measures for the urban black-stinking waterbody[J]. Chinese Journal of Environmental Engineering, 2019,13(3):519-529.