Analysis of the coupling process and the influencing factors of the “water-energy-carbon” relationship in the Hohhot-Baotou-Ordos-Yulin resource-based urban agglomeration
YANG Yi, ZHANG Yuan-yuan
School of Economics and Management, Xi'an University of Technology, Xi'an 710054, China
Abstract:To describe the spatiotemporal evolution of "water-energy-carbon" in the Hohhot-Baotou-Ordos-Yulin urban agglomeration, the level of coupled and coordinated development was analyzed, and a gray correlation model was established to identify the key driving factors affecting the change in the coupled and coordinated levels. The results showed that the water consumption, energy consumption and carbon emissions of urban agglomerations had fluctuating growth from 2005 to 2019, and the coupling coordination of "water-energy-carbon" was low, with urbanization rate, population size and economic development level being the key driving factors affecting coupling coordination. The key drivers of coupling coordination of "water-energy-carbon" in each city had obvious spatial heterogeneity. This study provides a scientific basis for revealing the dynamic change process and driving mechanism of urban ecosystems and formulating differentiated urban environmental management policies in resource-based urban agglomerations in the Yellow River Basin.
杨屹, 张园园. 呼包鄂榆资源型城市群“水-能-碳”耦合变化及影响因素[J]. 中国环境科学, 2023, 43(11): 6212-6224.
YANG Yi, ZHANG Yuan-yuan. Analysis of the coupling process and the influencing factors of the “water-energy-carbon” relationship in the Hohhot-Baotou-Ordos-Yulin resource-based urban agglomeration. CHINA ENVIRONMENTAL SCIENCECE, 2023, 43(11): 6212-6224.
Liang M S, Huang G H, Chen J P, et al. Energy-water-carbon nexus system planning:A case study of Yangtze River Delta urban agglomeration, China [J]. Applied Energy, 2022,308,118144.
[2]
The United Nations. 2015. Sustainable Development Goals. 2022-03-10, http://www.un.org/sustainabledevelopment/zh/sustainable-development-goals/.
[3]
孙久文,崔雅琪,张皓.黄河流域城市群生态保护与经济发展耦合的时空格局与机制分析[J]. 自然资源学报, 2022,37(7):1673-1690. Sun J W, Cui Y Q, Zhang H. Spatio-temporal pattern and mechanism analysis of coupling between ecological protection and economic development of urban agglomerations in the Yellow River Basin [J]. Journal of Natural Resources, 2022,37(7):1673-1690.
[4]
赵武生,石培基.基于生态系统服务的兰西城市群复合生态系统耦合协调关系研究[J]. 中国环境科学, 2022,42(11):5358-5368. Zhao W S, Shi P J. Research on the the coupling and coordination of the complex ecosystem in the Lanzhou-Xining urban agglomeration based on ecosystem services [J]. China Environmental Science, 2022, 42(11):5358-5368.
[5]
Zhang C, He G, Johnston J, et al. Long-term transition of China's power sector under carbon neutrality target and water withdrawal constraint [J]. Journal of Cleaner Production, 2021,329,129765.
[6]
Wang X, Klemeš J, Ouyang X et al. Regional embodied Water-Energy-Carbon efficiency of China [J]. Energy, 2021,224,120159.
[7]
饶清华,林秀珠,李家兵,等.流域社会经济与水环境质量耦合协调度分析[J]. 中国环境科学, 2019,39(4):1784-1792. Rao Q H, Lin X Z, Li J B, et al. Analysis of coupling coordination between social economy and water environment quality in river basin [J]. China Environmental Science, 2019,39(4):1784-1792.
[8]
任玉芬,苏小婉,贺玉晓,等.中国生态地理区城市水资源利用效率及影响因素[J]. 生态学报, 2020,40(18):6459-6471. Ren Y F, Su X W, He Y X, et al. Urban water resource utilization efficiency and its influencing factors in eco-geographic regions of China [J]. Acta Ecologica Sinica, 2020,40(18):6459-6471.
[9]
杜昱东,刘恋,王佳斌,等.基于碳排放约束的北京市社区生态效率评价[J]. 生态学报, 2023,(2):1-13. Du Y D, Liu L, Wang J B, et al. Evaluation of community's ecological efficiency in Beijing based on carbon emission constraint [J]. Acta Ecologica Sinica, 2023,(2):1-13.
[10]
王雅晴,谭德明,张佳田,等.我国城市发展与能源碳排放关系的面板数据分析[J]. 生态学报, 2020,40(21):7897-7907. Wang Y Q, Tan D M, Zhang J T, et al. The impact of urbanization on carbon emissions:Analysis of panel data from 158cities in China [J]. Acta Ecologica Sinica, 2020,40(21):7897-7907.
[11]
孙才志,魏亚琼,赵良仕.干旱区水-能源-粮食纽带系统协同演化——以中国西北地区为例[J]. 自然资源学报, 2022,37(2):320-333. Sun C Z, Wei Y Q, Zhao L S. Co-evolution of water-energy-food nexus in arid areas:Take Northwest China as an example [J]. Journal of Natural Resources, 2022,37(2):320-333.
[12]
Ahmad S, Jia H, Chen Z, et al. Water-energy nexus and energy efficiency:A systematic analysis of urban water systems [J]. Renewable and Sustainable Energy Reviews, 2020,134,110381.
[13]
Wilkinson R. Methodology for analysis of the energy intensity of California's water systems and an assessment of multiple potential benefits through integrated water-energy efficiency measures [D]. University of California Santa Barbara. 2000.
[14]
de Oliveira G C, Bertone E, Stewart R A. Challenges, opportunities, and strategies for undertaking integrated precinct-scale energy-water system planning [J]. Renewable and Sustainable Energy Reviews, 2022,161,112297.
[15]
王风初,曹建军,王宁,等.近20年我国虚拟水、能消耗及耦合和需求预测[J]. 中国环境科学, 2022,42(10):4919-4930. Wang F C, Cao J J, Wang N, et al. Consumption and coupling of virtual water and virtual energy in the past 20years and predicting their demand for the next decade in China [J]. China Environmental Science, 2022,42(10):4919-4930.
[16]
王长建,汪菲,张虹鸥.新疆能源消费碳排放过程及其影响因素——基于扩展的Kaya恒等式[J]. 生态学报, 2016,36(8):2151-2163. Wang C J, Wang F, Zhang H O. The process of energy-related carbon emissions and influencing mechanism research in Xinjiang [J]. Acta Ecologica Sinica, 2016,36(8):2151-2163.
[17]
Wang P, Huang G, Li Y. A factorial stepwise-clustering input-output model for unveiling water-carbon nexus from multi-policy perspectives [J]. Science of The Total Environment, 2023,866:161315.
[18]
Fang D, Chen F. Linkage analysis for water-carbon nexus in China [J]. Applied Energy, 2018,225:682-695.
[19]
Venkatesh G, Chan A, Brattebø H. Understanding the water-energy-carbon nexus in urban water utilities:Comparison of four city case studies and the relevant influencing factors [J]. Energy, 2014,75:153-166.
[20]
周侃,伍健雄,樊杰,等.长江经济带环境污染胁迫的驱动因素及空间效应[J]. 环境科学学报, 2021,41(5):1996-2004. Zhou K, Wu J X, Fan J, et al. 2021. Driving factors of environmental pollution stress and their spatial effects in the Yangtze River Economic Belt [J]. Acta Scientiae Circumstantiae, 2021,41(5):1996-2004.
[21]
王正,樊杰.能源消费碳排放的影响因素特征及研究展望[J]. 地理研究, 2022,41(10):2587-2599. Wang Z, Fan J. The characteristics and prospect of influencing factors of energy-related carbon emissions:Based on literature review [J]. Geographical Research, 2022,41(10):2587-2599.
[22]
陈菁泉,连欣燕,马晓君,等.中国全要素能源效率测算及其驱动因素[J]. 中国环境科学, 2022,42(5):2453-2463. Chen J Q, Lian X Y, Ma X J, et al. Total factor energy efficiency measurement and drivers in China [J]. China Environmental Science, 2022,42(5):2453-2463.
[23]
边志强,钟顺昌.资源型城市经济增长目标对碳排放效率的影响[J]. 中国环境科学, 2023,43(8):4395-4408 Bian Z Q, Zhong S C. The impact of economic growth target on carbon emission efficiency in resource-based cities [J]. China Environmental Science, 2023,43(8):4395-4408.
[24]
吴康,张文忠,张平宇,等.中国资源型城市的高质量发展:困境与突破[J]. 自然资源学报, 2023,38(1):1-21. Wu K, Zhang W Z, Zhang P Y, et al. High-quality development of resource-based cities in China:Dilemmas and breakthroughs [J]. Journal of Natural Resources, 2023,38(1):1-21.
[25]
国家发展改革委关于印发呼包鄂榆城市群发展规划的通知[N]. 中央人民政府网站,http://www.gov.cn/xinwen/2018-03/07/content_5271788.htm, 2018-03-07. Notice of the National Development and Reform Commission on Printing and Distributing the Development Plan of Hohhot-Baotou-Ordos-Yulin Urban Agglomeration [N]. The website of the Central People's Government, http://www.gov.cn/xinwen/2018-03/07/content_5271788.htm, 2018-03-07.
[26]
崔远政,姜磊,张为师,等.中国西部人为源NO2污染的时空分布及影响因素研究[J]. 环境科学学报, 2019,39(12):4152-4161. Cui Y Z, Jiang L, Zhang W S, et al. Spatio-temporal variations and influential factors of anthropogenic NO2 pollution over Western China [J]. Acta Scientiae Circumstantiae, 2019,39(12):4152-4161.
[27]
康哲,李巍,刘伟.黄河流域城市群工业减污降碳影响因素及协同推进策略研究[J]. 中国环境科学, 2023,43(4):1946-1956. Tang Z, Li w, Liu W. Influencing factors and synergistic promotion strategy of industrial pollution and carbon reduction at urban agglomerations of the Yellow River Basin [J]. China Environmental Science, 2023,43(4):1946-1956.
[28]
邹亚锋,段伟,郭娜娜.呼包鄂榆城市群经济和环境协调发展研究[J]. 内蒙古大学学报(哲学社会科学版), 2020,52(5):42-49. Zou Y F, Duan W, Guo N N. Research on Coordinated Development of Economy and Environment in Hohhot-Baotou-Erdos-Yulin Economic Zone [J]. Journal of Inner Mongolia University (Philosophy and Social Sciences), 2020,52(5):42-49.
[29]
Hoekstra A Y. Virtual water an introduction. Virtual water trade:Proceedings of the International expert meeting on virtual water trade. Value of water research report series No. 12[R]. Delft. The Netherlands, IHE, 2003:12-13.
[30]
Water footprint network. Water footprint assessment manual-Setting the global standard. 2019. https://www.waterfootprint.org/en/water-footprint/global-water-footprint-standard/
[31]
Cai J, He Y, Xie R, et al. A footprint-based water security assessment:An analysis of Hunan province in China [J]. Journal of Cleaner Production, 2020,245,118485.
[32]
Bunsen J, Berger M, Finkbeiner M. Planetary boundaries for water-A review [J]. Ecological Indicators, 2021,121,107022.
[33]
Lucas P L, Wilting H C, Hof A F, et al. Allocating planetary boundaries to large economies:Distributional consequences of alternative perspectives on distributive fairness [J]. Global Environmental Change, 2020,60,102017.
[34]
Steffen W, Richardson K, Rockstrm J, et al. Planetary boundaries:Guiding human development on a changing planet [J]. Science, 2015,347,1259855.
[35]
方恺.基于足迹家族和行星边界的主要国家环境可持续性多维评价[J]. 生态环境学报, 2014,11:1868-1875. Fang K. Multidimensional assessment of national environmental sustainability based on footprint family and planetary boundaries [J]. Ecology and Environmental Sciences, 2014,23(11):1868-1875.
[36]
孙艳芝,沈镭.关于我国四大足迹理论研究变化的文献计量分析[J]. 自然资源学报, 2016,31(9):1463-1473. Sun Y Z, Shen L. Bibliometric analysis on research progress of four footprint methodologies in China [J]. Journal of Natural Resources, 2016,31(9):1463-1473.
[37]
Eggleston H S, Buendia L, Miwa K, et al. IPCC guidelines for national greenhouse gas inventories [J]. Hayama:Institute for Global Environmental Strategies, 2006,2:48-56.
[38]
张宁,杨肖,陈彤.中国西部地区水-能源-粮食系统耦合协调度的时空特征[J]. 中国环境科学, 2022,42(9):4444-4456. Zhang N, Yang X, Chen T. Research on the coupling coordination of water-energy-food system and its temporal and spatial characteristics [J]. China Environmental Science, 2022,42(9):4444-4456.
[39]
Xian C, Fan Y, Zhang J, et al. Assessing sustainable water utilization from a holistic view:A case study of Guangdong, China [J]. Sustainable Cities and Society, 2022,76,103428.
[40]
Tomás M, López LA, Monsalve F. Carbon footprint, municipality size and rurality in Spain:Inequality and carbon taxation [J]. Journal of Cleaner Production, 2020,266,121798.
[41]
赵武生,石培基.基于InVEST模型的复合生态系统耦合协调关系研究——以兰西城市群为例[J]. 中国环境科学, 2023,43(4):1883-1894. Zhao W S, Shi P J. The coupling and coordination of complex ecosystem based on the InVEST model-A case study in the Lanzhou-Xining urban agglomeration [J]. China Environmental Science, 2023, 43(4):1883-1894.
[42]
徐辉,王亿文,张宗艳,等.黄河流域水-能源-粮食耦合机理及协调发展时空演变[J]. 资源科学, 2021,43(12):2526-2537. Xu H, Wang Y W, Zhang Z Y, et al. Coupling mechanism of water-energy-food and spatiotemporal evolution of coordinated development in the Yellow River Basin [J]. Resources Science, 2021,43(12):2526-2537.
[43]
Li W, Wang Y, Xie S, et al. Coupling coordination analysis and spatiotemporal heterogeneity between urbanization and ecosystem health in Chongqing municipality, China [J]. Science of The Total Environment, 2021,791,148311.
[44]
刘宇峰,原志华,郭玲霞,等.陕西省城市绿色增长水平时空演变特征及影响因素解析[J]. 自然资源学报, 2022,37(1):200-220. Liu Y F, Yuan Z H, Guo L X, et al. Spatio-temporal characteristics of urban green growth level and its influencing factors in Shaanxi province [J]. Journal of Natural Resources, 2022,37(1):200-220.
[45]
郭向阳,穆学青,丁正山,等.长三角多维城市化对PM2.5浓度的非线性影响及驱动机制[J]. 地理学报, 2021,76(5):1274-1293. Guo X Y, Mu X Q, Ding Z S, et al. Nonlinear effects and driving mechanism of multidimensional urbanization on PM2.5 concentrations in the Yangtze River Delta [J]. Acta Geographica Sinica, 2021,76(5):1274-1293.
[46]
梁建飞,陈松林.环境约束下的福建省城市建设用地利用效率及驱动因素[J]. 自然资源学报, 2020,35(12):2862-2874. Liang J F, Chen S L. Research on the land-use efficiency and driving factors of urban construction in Fujian province under environmental constraints [J]. Journal of Natural Resources, 2020,35(12):2862-2874.
[47]
樊鹏飞,冯淑怡,苏敏,等.基于非期望产出的不同职能城市土地利用效率分异及驱动因素探究[J]. 资源科学, 2018,40(5):946-957. Fan P F, Feng S Y, Su M, et al. Differential characteristics and driving factors of land use efficiency in different functional cities based on undesirable outputs [J]. Resources Science, 2018,40(5):946-957.
[48]
刘宁,李华姣,边志强,等.基于空间面板STIRPAT模型的水足迹影响因素分析——以山东省为例[J]. 生态学报, 2022,42(22):9335-9347. Liu N, Li H J, Bian Z Q. Influence factors of water footprint based on spatial panel STIRPAT Model:A case study of Shandong Province [J]. Acta Ecologica Sinica, 2022,42(22):9335-9347.
[49]
李波,严建飞.黄河流域水-能源-环境系统动态耦合协调发展研究[J]. 人民黄河, 2022,44(7):59-63. Li B, Yan J F. Research on the dynamic coupling coordinative degree among water-energy-environment system in the Yellow River Basin [J]. Yellow River, 2022,44(7):59-63.
[50]
赵金辉,田林,李思源,等.黄河流域能源与环境-经济-生态耦合协调发展研究[J]. 人民黄河, 2022,44(11):13-19. Zhao J H, Tian L, Li S Y, et al. Research on the coupling and coordination development of energy and environment-economy-ecology in the Yellow River Basin [J]. Yellow River, 2022,44(11):13-19.
[51]
郑贺允,葛力铭.资源型城市可持续发展对碳排放的影响研究——基于资源依赖的视角[J]. 中国环境科学, 2022,42(6):2955-2964. Zheng H Y, Ge L M. Impact of sustainable development in resource-based cities on carbon emissions:From the perspective of resource dependence [J]. China Environmental Science, 2022,42(6):2955-2964.
[52]
秦炳涛,彭涔,葛力铭,等.资源依赖、政府廉政水平与绿色技术创新——来自中国资源型城市的经验证据[J]. 中国环境科学, 2023,43(7):3835-3847. Qin B T, Peng C, Ge L M, et al. Resource dependence, government integrity and green technology innovation——Evidence from resource-based cities in China [J]. China Environmental Science, 2023, 43(7):3835-3847.