Abstract:To deal with problems such as high concentration of arsenic (As) and fluorine (F) in water, along with difficulty in dealing with complex pollution and irrigation utilization, zirconium-aluminum modified biochars were synthesized to study their adsorption efficiency and mechanism of As and F. The study was conducted to explore the impact of initial concentration, adsorption time, pH, and co-existing ions on their adsorption. The combination of SEM, BET, FTIR, and X-ray techniques were applied to characterize and analyze the materials. The results showed that zirconium-aluminum bimetallic modified biochar (ZA-BC) was an excellent mesoporous biochar with a good pore structure, which can rapidly adsorb As and F ions within 6hours. With initial concentrations of 1mg/L for As and 5mg/L for F, and a biochar dosage of 1g/L, As and F removal rates can reach 98.7% and 95.2%. The optimal adsorption pH of As and F by ZA-BC was 4~5, the zero charge point of the material was 9.1. Its adsorption fits the Langmuir isotherm and pseudo-second-order kinetic models within a pH range of 4.0~9.1. ZA-BC adsorbed As and F at 19.62 and 28.70mg/g, respectively, with CO32- most affecting its efficiency. ZA-BC's adsorption of As involved electrostatic attraction and surface complexation, whereas for F, it's primarily electrostatic and ion exchange. The hydroxyl group was vital for adsorption, with metal modifications enhancing the immobilization of As and F via M-OH groups. Comprehensive tests had shown that ZA-BC was a promising adsorbent for removing arsenic and fluoride from water.
宋振, 罗艳丽, 王美娟, 何佳乐, 张千, 解新哲. 锆铝等双金属改性生物炭同步去除水中As(V)和F[J]. 中国环境科学, 2025, 45(3): 1308-1320.
SONG Zhen, LUO Yan-li, WANG Mei-juan, HE Jia-le, ZHANG Qian, XIE Xin-zhe. Zirconium-aluminum dual-metal modified biochar for simultaneous removal of As(V) and F from water. CHINA ENVIRONMENTAL SCIENCECE, 2025, 45(3): 1308-1320.
[1] 贾祥苓.用于同步除氟除砷的羟基磷灰石动态膜系统的研究[D].苏州科技大学, 2022. Jia X L. Research on a hydroxyapatite dynamic membrane system for simultaneous fluoride and arsenic removal[D]. Suzhou University of Science and Technology, 2022. [2] 王翔,罗艳丽,邓雯文,等.新疆奎屯地区高砷地下水DOM三维荧光特征[J].中国环境科学, 2020,40(11):4974-4981. Wang X, Luo Y L, Deng W W, et al. 3D fluorescence characteristics of DOM in high-arsenic groundwater in Kuqi town, Xinjiang, China.[J]. China Environmental Science, 2020,40(11):4974-4981. [3] 许乃政,刘林,王赫生,等.淮河流域平原区高氟地下水的环境健康风险及其成因[J].中国地质, 2024,51(2):457-482. Xu N Z, Liu l, Wang H S, et al. The environmental health risks and causes of high fluoride groundwater in the plain area of the huaihe river basin[J]. China Geology, 2024,51(2):457-482. [4] Aryan Y, Pon T, Panneerselvam B, et al. A comprehensive review of human health risks of arsenic and fluoride contamination of groundwater in the South Asia region.[J]. Journal of water and health, 2024,22(2):235-267. [5] 李巧,刘亚楠,陶洪飞,等.奎屯河流域地下水砷、氟空间分布及成因[J].新疆农业大学学报, 2021,44(5):337-346. Li Q, Liu Y N, Tao H F, et al. Spatial distribution and genesis of groundwater arsenic and fluorine in kuqu river basin[J]. Journal of Xinjiang Agricultural University, 2021,44(5):337-346. [6] 李晶,罗艳丽,余艳华.新疆奎屯垦区地下水砷-氟复合污染及成因初探[J].环境保护科学, 2016,42(2):124-128. Li J, Luo Y L, Yu Y H. Investigation on the arsenic-fluoride composite contamination of groundwater in kuytun farming area, xinjiang and preliminary analysis of its causes[J]. Environmental Protection Science, 2016,42(2):124-128. [7] Bhattacharya P, Adhikari S, Samal C A, et al. Health risk assessment of co-occurrence of toxic fluoride and arsenic in groundwater of dharmanagar region, North Tripura (India)[J]. Groundwater for Sustainable Development, 2020,11. [8] Cristina M C, Sabrina S, Chiara M, et al. Rice industry by-products as adsorbent materials for removing fluoride and arsenic from drinking aater-a review[J]. Applied Sciences, 2022,12(6):3166-3166. [9] 吕思璐,刘天,王旭,等.硫化亚铁改性生物炭对水中Cr (Ⅵ)的去除机理研究[J].中国环境科学, 2023,43(8):3935-3945. Luv S L, Liu T, Wang X, et al. Research on the removal mechanism of Cr (VI) in water by modified biochar with ferrous sulfide[J]. China Environmental Science, 2023,43(8):3935-3945. [10] 陈文敏,谭志强,张家泉,等.铁氧化物改性玉米芯生物炭对水体中砷的吸附特性研究[J].安全与环境工程, 2023,30(5):266-272,288. Cheng W M, Tan Z Q, Zhang J Q, et al. Research on the adsorption characteristics of arsenic in water by modified corn cob biochar with iron oxides[J]. Safety and Environmental Engineering, 2023,30(5):266-272,288. [11] Wang J G, Cheng N, Feng C P, et al. Performance and mechanism of fluoride adsorption from groundwater by lanthanum-modified pomelo peel biochar[J]. Environmental science and pollution research international, 2018,25(16):15326-15335. [12] García-Sánchez J, Solache-Ríos M, Martínez-Gutiérrez J, et al. Modified natural magnetite with Al and La ions for the adsorption of fluoride ions from aqueous solutions[J]. Journal of Fluorine Chemistry, 2016,186115-124. [13] 卜子宁,孙洋,于倩倩,等.金属改性生物炭吸附水体中磷酸盐研究现状[J/OL].应用化工, 1-6[2024-10-03] . Bu Z N, Sun Y, Yu Q Q. Research on the adsorption of phosphate by metal-modified biochars in water bodies[J/OL]. Applied Chemical Industry, 1-6[2024-10-03] . [14] 刘总堂,邵江,李艳,等.碱改性小麦秸秆生物炭对水中四环素的吸附性能[J].中国环境科学, 2022,42(8):3736-3743. Liu Z T, Shao J, Li Y. Adsorption of tetracycline by alkali-modified wheat straw biochar in water[J]. China Environmental Science, 2022, 42(8):3736-3743. [15] 许乃才,黄国勇,史丹丹,等.氧化铝基吸附材料制备及除氟研究进展[J].材料导报, 2023,37(15):57-66. Xu N C, Huang G Y, Shi D D. Research progress on the preparation and fluoride removal of alumina-based adsorbent materials[J]. Materials Review, 2023,37(15):57-66. [16] 王艺,姜晓,任苏瑜,等.新型氧化铈/氧化锆-梯度扩散薄膜技术用于水体和沉积物中无机砷的形态分析[J].分析化学, 2018,46(11):1829-1835. Wang Y, Jiang X, Ren S Y, et al. A novel cerIA/Zirconia gradient diffusion thin film technique for the morphology analysis of inorganic arsenic in water and sediment[J]. Analytical Chemistry, 2018,46(11):1829-1835. [17] 辛永光,欧宏森,孙嘉康,等.水合氧化锆负载氧化石墨烯复合材料的制备及其对砷的吸附性能研究[J].当代化工研究, 2022,(22):86-89. Xin Y G, Ou H S, Sun J K, et al. Preparation and adsorption performance of water-soluble zirconium oxide-loaded graphene oxide composite materials for arsenic adsorption[J]. contemporary chemical research, 2022,(22):86-89. [18] 刘艳芳,高玮,刘蕊,等.铝锆改性生物炭对水体低浓度氟的吸附特性[J].环境科学, 2023,44(4):2147-2157. Liu Y F, Gao W, Liu R, et al. The adsorption characteristics of low-concentration fluoride in water by modified biochar with aluminum and zirconium[J]. Environmental Science, 2023,44(4):2147-2157. [19] 郭春霞,陈伟东,闫淑芳,等.埃洛石纳米管负载锆氧化物吸附水中砷的研究[J].无机材料学报, 2023,38(5):529-538. Guo C X, Chen W D, Yan S F, et al. Research on the adsorption of arsenic in water by hectorite nanotubes loaded with zirconium oxide[J]. Journal of Inorganic Materials, 2023,38(5):529-538. [20] 许俊超,林奕龙,吴春山,等.铝改性活性炭去除水中氟离子效果研究[J].化学工程与装备, 2023,(2):4-7. Xu J C, Lin Y L, Wu C S, et al. Research on the removal of fluoride ions by modified aluminum activated carbon in water[J]. Chemical Engineering and Equipment, 2023,(2):4-7. [21] Han Y, Jiang T, Xiong X Y, et al. In-situ synthesis of modified zeolite with high zirconium content using fly ash and its efficient removal for As (V) in solution[J]. Journal of Environmental Chemical Engineering, 2024,12(2):112212-. [22] Yu, C L, Liu L, et al. Fluoride removal performance of highly porous activated alumina[J]. Journal of Sol-Gel Science and Technology, 2022,106(2):1-9. [23] Kumar S S, Muslum D, Vijayalakshmi G. Adsorptive removal of heavy metals from industrial effluents using cow dung as the biosorbent:kinetic and isotherm modeling[J]. Environmental Quality Management, 2020,30(1):51-60. [24] 薛炳松,谢童,王珊,等.镧改性生物炭对砷、镉的吸附特征研究[J].地球与环境, 2022,50(2):261-270. Xue B S, Xie T, Wang S, et al. Research on the adsorption characteristics of arsenic and cadmium by lanthanum modified biochar. Earth and Environment, 2022,50(2):261-270. [25] 张苏明,张建强,周凯,等.铁基改性椰壳生物炭对砷的吸附效果及机制研究[J].生态环境学报, 2021,30(7):1503-1512. Zhang S M, Zhang J Q, Zhou K, et al. Research on the adsorption effect and mechanism of arsenic by iron-modified coconut shell biochar[J]. Journal of Eco-Environmental Science, 2021,30(7):1503-1512. [26] 田周炀,郑倩,杜晓丽,等.不同Mn/Fe比例天然含铁锰矿的As (Ⅲ)吸附性能与机制[J/OL].环境化学, 1-11[2024-07-16] . Tian Z Y, Zhen Q, Du X L, et al. The adsorption performance and mechanism of As (III) on natural iron-manganese ore with different Mn/Fe ratios[J/OL]. Environmental Chemistry, 1-11[2024-07-16] . [27] Mei L P, Qiao H H, Ke F, et al. One-step synthesis of zirconium dioxide-biochar derived from Camellia oleifera seed shell with enhanced removal capacity for fluoride from water[J]. Applied Surface Science, 2020,509144685-144685. [28] Issabayeva G,Wong H S,Pang Y C, et al.Fluoride removal by low-cost palm shell activated carbon modified with prawn shell chitosan adsorbents[J]. International Journal of Environmental Science and Technology, 2021,19(5):1-10. [29] 李舒舒,宋明珊,童琳,等.负载铝铈污泥生物炭对模拟废水的强化除氟作用[J].环境工程学报, 2023,17(3):750-760. Li S S, Song M S, Tong L, et al. The enhanced fluoride removal by loaded cerium-aluminum pore-clogging biochar from simulated wastewater[J]. Journal of Environmental Engineering, 2023,17(3):750-760. [30] Saikia R, Goswami R, BordoloiN, et al. Removal of arsenic and fluoride from aqueous solution by biomass based activated biochar:Optimization through response surface methodology[J]. Journal of Environmental Chemical Engineering, 2017,5(6):5528-5539. [31] SHEN Z Y, JIN J, FU J J, et al. Anchoring Al-and/or Mg-oxides to magnetic biochars for Co-uptake of arsenate and fluoride from water[J]. Journal of Environmental Management, 2021,293112898-112898. [32] 戴志鹏,罗艳丽,王翔.新疆奎屯河流域高砷、高氟地下水的分布特征[J].环境保护科学, 2019,45(4):81-86. Dai Z P, Luo Y L, Wang X. The distribution characteristics of high arsenic and fluoride groundwater in the kuitun river basin, Xinjiang[J]. Journal of Environmental Protection Science, 2019,45(4):81-86. [33] 邹志鑫,李敏,任晓影,等.Mg-Al水滑石的制备及对水中氟离子的吸附效果研究[J].功能材料, 2024,55(4):4179-4184. Zou Z X, Li M, Ren X Y, et al. Preparation of Mg-Al hydrotalcite and study on its adsorption effect on fluoride ions in water[J]. Functional Materials, 2024,55(4):4179-4184. [34] 邱琪,郑瑞彬,周伟伟,等.磁性生物炭催化高铁酸盐降解新污染物效能及机理[J/OL].中国环境科学, 1-8[2024-08-22] . Qiu Q, Zheng R B, ZHOU W W, et al. The efficiency and mechanism of magnetic biochar catalyzed peroxymonosulfate degradation of emerging pollutants[J/OL]. China Environmental Science, 1-8[2024-08-22] . [35] Iriel A, Brown M L J, Diljkan M, et al. Arsenic adsorption on iron-modified montmorillonite:Kinetic equilibrium and surface complexes[J]. Environmental Engineering Science, 2020,37(1):22-32. [36] Hao J J, Wu L S, Lu X W, et al. A stable Fe/Co bimetallic modified biochar for ofloxacin removal from water:adsorption behavior and mechanisms[J]. RSC advances, 2022,12(49):31650-31662. [37] GB 5084-2021农田灌溉水质标准[S]. GB 5084-2021 Standard for water quality in farm irrigation[S]. [38] 阎晗,刘海燕,刘洋虹,等.双改性活性氧化铝除氟吸附性能研究[J].应用化工, 2024,53(2):354-357. Yan H, Liu H Y, Liu Y H, et al. Research on the adsorption fluoride Removal Performance of Double Modified Active Alumina[J]. Applied Chemical Industry, 2024,53(2):354-357. [39] Mei L P, Qiao H H, Ke F, et al. One-step synthesis of zirconium dioxide-biochar derived from Camellia oleifera seed shell with enhanced removal capacity for fluoride from water[J]. Applied Surface Science, 2020,509144685-144685. [40] 包莫日根,莫日格吉乐,赵红叶,等.金属氧化物基生物炭复合材料在污水处理领域中的应用现状[J].化工新型材料, 2024,52(5):213-220. Bao M R G, Mo R G J L, Zhao H Y, et al. Application status of metal oxid-based biochar composites in wastewater treatment[J]. New Chemical Materials, 2019,52(5):213-220. [41] 李含,赵雨,陈嘉超,等.Ce-La双金属氧化物同步去除酸性废水中磷酸盐和氟的性能与机理[J].中国环境科学, 2023,43(10):5148-5156. Li H, Zhao Y, Chen J C, et al. The performance and mechanism of Ce-La bimetallic oxide for simultaneous removal of phosphate and fluoride from acidic wastewater[J]. China Environmental Science, 2023,43(10):5148-5156. [42] Iram A, Muhammad R, Layton J U, et al. Lignocellulosic based biochar adsorbents for the removal of fluoride and arsenic from aqueous solution:isotherm and kinetic modeling[J]. Polymers, 2022,14(4):715-715. [43] 骆春会.牦牛粪生物炭制备及其去除水中砷和氟的研究[D].天津:天津大学, 2018. Luo C H. Preparation of yak dung biochar and its removal of arsenic and fluoride in water[D]. Tianjin:Tianjin University, 2018. [44] 黄志勇,左晨鹏.聚合氯化铝-聚丙烯酰胺处理含氟废水研究[J].矿冶工程, 2024,44(3):97-99,105. Huang Z Y, Zuo C P. Research on the treatment of fluoride-containing wastewater using polyaluminium chloride-polyacrylamide[J]. Mining and Metallurgical Engineering, 2024,44(3):97-99,105. [45] 高敬毅,崔佳丽,杨栋.生物炭/Ca/La-LDH对水中磷酸盐的高选择性吸附机制[J].中国环境科学, 2024,44(10):5584-5595. Gao J Y, Cui Y L, Yang D. The highly selective adsorption mechanism of phosphate by biochar/Ca/La-LDH in water[J]. China Environmental Science, 2024,44(10):5584-5595. [46] 余文婷,罗明标.锆基金属有机框架与Fe2O3复合材料对砷的吸附及机理研究[J].分析化学, 2023,51(6):1003-1012. Yu W T, Luo M B. Research on the adsorption of arsenic by zirconium metal-organic frameworks and Fe2O3 composite materials and its mechanism[J]. Analytical Chemistry, 2023,51(6):1003-1012. [47] 段平洲,贾晓波,后希康,等.磁性铝基MOF的表征和对水体中氟化物吸附性能研究[J].环境科学研究, 2021,34(5):1139-1147. Duan P Z, Jia X B, Hou X K, et al. Characterization and adsorption performance of fluoride on magnetic aluminum-based MOF for water treatment[J]. Environmental Science Research, 2021,34(5):139-1147.