Exploring the potential of biochar for the remediation of soils co-contaminated with plastics and cadmium
CAO Yan-xiao1, CHEN Nuo1, XU Xin-yu1, ZHAO Meng-jie1, YANG Jiang-xiu1, WU Jun-feng2, LI Hong-hu1, ZHANG Jing-dong1
1. Research Center for Environment and Health, School of Information Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China; 2. Wuhan Regen Environmental Remediation Co., Ltd, Wuhan 430040, China
Abstract:A 120-day soil incubation experiment was conducted to investigate the effects of rice husk biochar on soil properties and cadmium (Cd) immobilization in polypropylene micro-/macroplastics and Cd co-contaminated soils. The results showed that biochar addition significantly improved soil pH in the co-contaminated soils compared to the control group. It also considerably increased the content of dissolved organic carbon in soils co-contaminated by 7% plastics and Cd. In addition, biochar promoted the conversion of Cd from the active form into relatively stable form in the particulate organic matter and mineral fractions, effectively reducing both the bioavailable Cd content and the proportion of DTPA-extractable Cd (DTPA-Cd) in the co-contaminated soils. Specifically, biochar reduced the bioavailable Cd content by 7.58%~19.71% and the DTPA-Cd proportion by 20.23%~30.83% in microplastics and Cd co-contaminated soils. For macroplastics and Cd co-contaminated soils, the corresponding reductions were 23.80%~28.19% and 21.63%~22.74%, respectively. Notably, the concentration of microplastics was positively correlated with the content of bioavailable Cd, while the concentration of macroplastics showed no significant effect on it. The findings demonstrated that rice husk biochar effectively alleviated the adverse effects of the plastics and Cd co-contamination through improving soil properties, mediating the migration and transformation of Cd among soil solid fractions, as well as adsorbing and immobilizing Cd.
曹艳晓, 陈诺, 徐鑫宇, 赵梦洁, 杨江秀, 吴俊锋, 李鸿鹄, 张敬东. 生物炭修复塑料-镉复合污染土壤潜力与机制[J]. 中国环境科学, 2025, 45(3): 1395-1409.
CAO Yan-xiao, CHEN Nuo, XU Xin-yu, ZHAO Meng-jie, YANG Jiang-xiu, WU Jun-feng, LI Hong-hu, ZHANG Jing-dong. Exploring the potential of biochar for the remediation of soils co-contaminated with plastics and cadmium. CHINA ENVIRONMENTAL SCIENCECE, 2025, 45(3): 1395-1409.
[1] 杨光蓉,陈历睿,林敦梅.土壤微塑料污染现状、来源、环境命运及生态效应[J].中国环境科学, 2021,41(1):353-365. Yang G R, Chen L R, Lin D M. Status, sources, environmental fate and ecological consequences of microplastic pollution in soil[J]. China Environmental Science, 2021,41(1):353-365. [2] Plastics Europe Market Research Group (PEMRG) and Conversio Market& Strategy GmbH. Plastics-the fast Facts 2023[EB/OL]. https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023. [3] Gabisa W E, Ratanatamskul C, Gheewala H S. Recycling of plastics as a strategy to reduce life cycle GHG emission, microplastics and resource depletion[J]. Sustainability, 2023,15(15):11529. [4] Olubukola S A, Jeffrey B F, M L H, et al. Microplastics and nanoplastics in aquatic environments:Aggregation, deposition, and enhanced contaminant transport[J]. Environmental Science& Technology, 2018,52(4):1704-1724. [5] Bas B, William C R, Senga D G. Effects of microplastics in soil ecosystems:Above and below ground[J]. Environmental Science& Technology, 2019,53(19):11496-11506. [6] Horton A A, Walton A, Spurgeon, et al. Microplastics in freshwater and terrestrial environments:Evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Environmental Science& Technology, 2017,586:127-141. [7] Jahnke A, Arp H P H, Escher B I, et al. Reducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environment[J]. Environmental Science& Technology Letters, 2017,4(3):85-90. [8] Berenstein G, Córdoba P, Díaz Y B, et al. Macro, meso, micro and nanoplastics in horticultural soils in Argentina:Abundance, size distribution and fragmentation mechanism[J]. Science of the Total Environment, 2023,906:167672. [9] Stefano N, Pleissner D. Quantification and analysis of surface macroplastic contamination on arable areas[J]. Journal of Soils and Sediments, 2021,22(3):1-12. [10] Chen L Y, Yu L, Li Y J, et al. Status, characteristics, and ecological risks of microplastics in farmland surface soils cultivated with different crops across mainland China[J]. Science of the Total Environment, 2023,897:165331. [11] Zhang J R, Ren S Y, Xu W, et al. Effects of plastic residues and microplastics on soil ecosystems:A global meta-analysis[J]. Journal of Hazardous Materials, 2022,435:129065. [12] 杨蓉,赵凡,桂向阳,等.老化作用对微塑料与镉在运河沿岸土壤中共迁移影响[J].中国环境科学, 2024,44(11):6260-6270. Yang R, Zhao F, Gui X Y, et al. Effect of agingon co-transport of microplastics and cadmium in canal soils[J]. China Environmental Science, 2024,44(11):6260-6270. [13] An Q Y, Zhou T, Wen C, et al. The effects of microplastics on heavy metals bioavailability in soils:A meta-analysis[J]. Journal of Hazardous Materials, 2023,460:132369. [14] Pang X H, Chen C, Sun J, et al. Effects of complex pollution by microplastics and heavy metals on soil physicochemical properties and microbial communities under alternate wetting and drying conditions[J]. Journal of Hazardous Materials, 2023,458:131989. [15] Deng J, Guo P Y, Zhang X Y, et al. Microplastics and accumulated heavy metals in restored mangrove wetland surface sediments at Jinjiang Estuary (Fujian, China)[J]. Marine Pollution Bulletin, 2020, 159:111482. [16] 李巧云,赵航航,杨婵,等.汉江上游农田土壤微塑料与重金属污染特征及生态风险评价[EB/OL].环境科学, 1-14.DOI:10.13227/j.hjkx.202401220. Li Q Y, Zhao H H, Yang C, et al. With characteristics, risk assessment of microplastics, and heavy metals pollution in farmland soils in the upper Hanjiang river[EB/OL]. Environmental Science, 1-14.DOI:10. 13227/j.hjkx.202401220. [17] Liao Y L, Tang Q X, Yang J Y, et al. Microplastic characteristics and microplastic-heavy metal synergistic contamination in agricultural soil under different cultivation modes in Chengdu, China[J]. Journal of Hazardous Materials, 2023,459:132270. [18] Zhou Y F, Liu X N, Wang J. Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of central China[J]. Science of the Total Environment, 2019,694:133798. [19] 王鑫淼,李敏,赵方凯,等.农业小流域土壤微塑料与重金属复合污染的空间分异研究[J].环境科学学报, 2024,44(6):330-339. Wang X M, Li M, Zhao F K, et al. Spatial variability of soil microplastic and heavy metal synergistics pollution in a typical agricultural watershed[J]. Journal of Environmental Sciences, 2024, 44(6):330-339. [20] Abbasi S, Keshavarzi B, Moore F, et al. Geochemistry and environmental effects of potentially toxic elements, polycyclic aromatic hydrocarbons and microplastics in coastal sediments of the Persian Gulf[J]. Environmental Earth Sciences, 2019,78(15):1-15. [21] Akhbarizadeh R, Moore F, Keshavarzi B, et al. Microplastics and potentially toxic elements in coastal sediments of Iran's main oil terminal (Khark Island)[J]. Environmental Pollution, 2017,220:720-731. [22] Lechthaler S, Esser V, Schuttrumpf H, et al. Why analysing microplastics in floodplains matters:Application in a sedimentary context[J]. Environmental Science-Processes& Impacts, 2020,23(1):117-131. [23] Ahmad T, Amjad M, Iqbal Q, et al. Occurrence of microplastics and heavy metals in aquatic and agroecosystem:A case study[J]. Bulletin of Environmental Contamination and Toxicology, 2022,109(2):266-271. [24] Sarkar A, Deb S, Ghosh S, et al. Impact of anthropogenic pollution on soil properties in and around a town in Eastern India[J]. Geoderma Regional, 2021,28:e00462. [25] Chouchene K, Nacci T, Modugno F, et al. Soil contamination by microplastics in relation to local agricultural development as revealed by FTIR, ICP-MS and pyrolysis-GC/MS[J]. Environmental Pollution, 2022,303:119016. [26] Khdre A M, Ramadan S A, Ashry A, et al. Chironomus sp. as a bioindicator for assessing microplastic contamination and the heavy metals associated with it in the sediment of wastewater in Sohag governorate, Egypt[J]. Water, Air,& Soil Pollution, 2023,234(3):161. [27] 华震宇,李霞,姜娜,等.新疆棉花主产区土壤残膜赋存特征及相关性[J].新疆农业科学, 2023,60(12):2932-2939. Hua Z Y, Li X, Jiang N, et al. Study on the occurrence characteristics and correlation of residual film in cotton field in Xinjiang[J]. Xinjiang Agricultural Sciences, 2023,60(12):2932-2939. [28] 冯天朕,陈苏,陈影,等.微塑料与Cd交互作用对小麦种子发芽的生态毒性研究[J].中国环境科学, 2022,42(4):1892-1900. Feng T Z, Chen S, Chen Y, et al. Study on ecological toxicity of microplastics and cadmium interaction on wheat seed germination[J]. China Environmental Science, 2022,42(4):1892-1900. [29] Frias J P G L, Sobral P, Ferreira A M. Organic pollutants in microplastics from two beaches of the Portuguese coast[J]. Marine Pollution Bulletin, 2010,60(11):1988-1992. [30] Velzeboer I, Kwadijk C J A F, Koelmans A A. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes[J]. Environmental Science& Technology, 2014,48(9):4869-4876. [31] Tang S, Yang X Q, Zhang T, et al. Adsorption mechanisms of metal ions (Pb, Cd, Cu) onto polyamide 6microplastics:New insight into environmental risks in comparison with natural media in different water matrices[J]. Gondwana Research, 2022,110:214-225. [32] Hodson M E, Duffus-Hodson C A, Clark A, et al. Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates[J]. Environmental Science& Technology, 2017,51(8):4714-4721. [33] Liu B Y, Zhao S L, Qiu T Y, et al. Interaction of microplastics with heavy metals in soil:Mechanisms, influencing factors and biological effects[J]. Science of the Total Environment, 2024,918:170281. [34] Huang F Y, Chen L, Yang X, et al. Unveiling the impacts of microplastics on cadmium transfer in the soil-plant-human system:A review[J]. Journal of Hazardous Materials, 2024,477:135221. [35] 侯宇晴,李冰,王金花,等.微塑料与农田土壤中典型污染物的复合污染研究进展[J].环境科学, 2024,45(2):1196-1209. Hou Y Q, Li B, Wang J H, et al. Research process on the combined pollution of microplastics and typical pollutants in agricultural soils[J]. Environmental Science, 2024,45(2):1196-1209. [36] Ullah H, Alomar S T, Hussain S, et al. Polyoxometalate based ionic liquids reinforced on magnetic nanoparticles:A sustainable solution for microplastics and heavy metal ions elimination from water[J]. Microchemical Journal, 2024,204:110941. [37] Zhang Y F, Fu H Y, Chen X, et al. Surface wettability control and electron transport regulation in zerovalent iron for enhanced removal of emerging polystyrene microplastics-heavy metal contaminants[J]. Water Research, 2024,256:121602. [38] Huang H, Li Z, Wang H, et al. Adsorption performance of layered double hydroxides for heavy metals removal in soil with the presence of microplastics[J]. Journal of Environmental Chemical Engineering, 2022,10(6):108733. [39] Deng X, Teng F, Chen M P, et al. Exploring negative emission potential of biochar to achieve carbon neutrality goal in China[J]. Nature Communications, 2024,15(1):1085. [40] Ibrahim M, Khan S, Hao X, et al. Biochar effects on metal bioaccumulation and arsenic speciation in alfalfa (Medicago sativa L.) grown in contaminated soil[J]. International Journal of Environmental Science and Technology, 2016,13(10):2467-2474. [41] Tang B, Xu H P, Song F M, et al. Effect of biochar on immobilization remediation of Cd-contaminated soil and environmental quality[J]. Environmental Research, 2021,204:111840. [42] Zuo W G, Wang S J, Zhou Y X, et al. Conditional remediation performance of wheat straw biochar on three typical Cd-contaminated soils[J]. Science of the Total Environment, 2023,863:160998. [43] Ren T B, Feng H L, Xu C S, et al. Exogenous application and interaction of biochar with environmental factors for improving functional diversity of rhizosphere's microbial community and health[J]. Chemosphere, 2022,294:133710. [44] Rubab A K, Tariq S, Muhammad A, et al. Biochar alleviated the toxic effects of PVC microplastic in a soil-plant system by upregulating soil enzyme activities and microbial abundance[J]. Environmental Pollution, 2023,332:121810. [45] 陈文轩,李茜,王珍,等.中国农田土壤重金属空间分布特征及污染评价[J].环境科学, 2020,41(6):2822-2833. Chen W X, Li Q, Wang Z, et al. Spatial distribution characteristics and pollution evaluation of heavy metals in arable land soil of China[J]. Environmental Science, 2020,41(6):2822-2833. [46] Ren S Y, Song C Q, Ye S J, et al. The spatiotemporal variation in heavy metals in China's farmland soil over the past 20 years:A meta-analysis[J]. Science of the Total Environment, 2022,806:150322. [47] Liu M, Lu S, Song Y, et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China[J]. Environmental Pollution, 2018,242:855-862. [48] Zhang Y, Wang K, Chen W Z, et al. Effects of land use and landscape on the occurrence and distribution of microplastics in soil, China[J]. Science of the Total Environment, 2022,847:157598. [49] Fuller S, Gautam A. A Procedure for measuring microplastics using pressurized fluid extraction[J]. Environmental Science& Technology, 2016,50(11):5774-5780. [50] Wang H T, Ding J, Chan X, et al. Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire californica [J]. Environmental Pollution, 2019, 251:110-116. [51] Wang J, Liu X H, Li Y, et al. Microplastics as contaminants in the soil environment:A mini-review[J]. Science of the Total Environment, 2019,691:848-857. [52] Wang W F, Gao H, Jin S C, et al. The ecotoxicological effects of microplastics on aquatic food web, from primary producer to human:A review[J]. Ecotoxicology and Environmental Safety, 2019,173:110-117. [53] 曹艳晓,陈田甜,陈诺,等.大塑料和微塑料影响土壤性质与镉生物有效性[J].中国环境科学, 2023,43(9):4916-4925. Cao Y X, Chen T T, Chen N, et al. Macroplastics and microplastics affect soil properties and cadmium bioavailability[J]. China Environmental Science, 2023,43(9):4916-4925. [54] HJ 889-2017土壤阳离子交换量的测定三氯化六氨合钴浸提-分光光度法[S]. HJ 889-2017 Soil quality-Determination of cation exchange capacity (CEC)-Hexamminecobalt trichloride solution-Spectrophotometric method[S]. [55] 熊振乾.湖北大冶矿区镉污染农田土壤原位钝化修复及其稳定性[D].武汉:华中农业大学, 2021. Xiong Z Q. The in-situ remediation and stability of cadmium polluted farmland soil in Daye mining area, Hubei province[D]. Wuhan:Huazhong Agricultural University, 2021. [56] GB/T 17141-1997土壤质量铅、镉的测定石墨炉原子吸收分光光度法[S]. GB/T 17141-1997 Soil quality-Determination of lead, cadmium-Graphite furnace atomic absorption spectrophotometry[S]. [57] GB/T 23739-2009土壤质量有效态铅和镉的测定原子吸收法[S]. GB/T 23739-2009 Soil quality Analysis of available lead and cadmium contents in soils Atomic absorption spectrometry[S]. [58] Tessier A, Campbell P G C, Bisson M X. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979,51(7):844-851. [59] Xie J J, Yuan C G, Shen Y W, et al. Bioavailability/speciation of arsenic in atmospheric PM2.5 and their seasonal variation:A case study in Baoding city, China[J]. Ecotoxicology and Environmental Safety, 2019,169:487-495. [60] 王天齐,李艳玲,杨阳,等.耕层重构对小麦籽粒镉累积的影响和应用风险[J].环境工程, 2023,41(4):116-122,169. Wang T Q, Li Y L, Yang Y, et al. Effect and application risk of plough-layer reconstruction on accumulation of cadmium by wheat grain[J]. Environmental Engineering, 2023,41(4):116-122,169. [61] 谭笑.锰改性生物炭材料的制备及其对镉砷污染土壤的修复效果研究[D].北京:北京化工大学, 2021. Tan X. Preparation of manganese modified biochar and its remediation effect on cadmium and arsenic contaminated soil[D]. Beijing:Beijing University of Chemical Technology, 2021. [62] Gopanna A, Mandapati R N, Thomas S P, et al. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and wide-angle X-ray scattering (WAXS) of polypropylene (PP)/cyclic olefin copolymer (COC) blends for qualitative and quantitative analysis[J]. Polymer Bulletin, 2019,76(8):4259-4274. [63] Fan H B, Yang R J. Thermal decomposition of polyhedral oligomeric octaphenyl, octa (nitrophenyl), and octa (aminophenyl) silsesquioxanes[J]. Journal of Thermal Analysis and Calorimetry, 2014,116(1):349-357. [64] 陈斐杰,夏会娟,刘福德,等.生物质炭特性及其对土壤性质的影响与作用机制[J].环境工程技术学报, 2022,12(1):161-172. Chen F J, Xiao H J, Liu F D, et al. Characteristics of biochar and its effects and mechanism on soil properties[J]. Journal of Environmental Engineering Technology, 2022,12(1):161-172. [65] 高凯芳,简敏菲,余厚平,等.裂解温度对稻秆与稻壳制备生物炭表面官能团的影响[J].环境化学, 2016,35(8):1663-1669. Gao K F, Jian M F, Yu H P, et al. Effects of pyrolysis temperatures on the biochars and its surface functional groups made from rice straw and rice husk[J]. Environmental Chemistry, 2016,35(8):1663-1669. [66] 杨彩迪,宗玉统,卢升高.不同生物炭对酸性农田土壤性质和作物产量的动态影响[J].环境科学, 2020,41(4):1914-1920. Yang C D, Zong Y T, Lu S G. Dynamic effects of different biochars on soil properties and crop yield of acid farmland[J]. Environmental Science, 2020,41(4):1914-1920. [67] Miao J R, Chen Y L, Zhang E Y, et al. Effects of microplastics and biochar on soil cadmium availability and wheat plant performance[J]. Global Change Biology Bioenergy, 2023,15(8):1046-1057. [68] Maruf M M, Serter A, Parvez K F, et al. Leachability of microplastic from different plastic materials[J]. Journal of Environmental Management, 2021,294:112995. [69] Wang F Y, Wang Q L, A C A, et al. Effects of microplastics on soil properties:Current knowledge and future perspectives[J]. Journal of Hazardous Materials, 2021,424:127531. [70] Wang Q L, A C A, Wang F Y, et al. Interactions between microplastics and soil fauna:A critical review[J]. Critical Reviews in Environmental Science and Technology, 2022,52(18):3211-3243. [71] Chen H P, Wang Y H, Sun X, et al. Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function[J]. Chemosphere, 2020,243:125271. [72] Liu W Y, Zhang J L, Liu H, et al. A review of the removal of microplastics in global wastewater treatment plants:Characteristics and mechanisms[J]. Environment International, 2021,146:106277. [73] 刘振杰,李鹏飞,黄世威,等.小麦秸秆生物质炭施用对不同耕作措施土壤碳含量变化的影响[J].环境科学, 2021,42(6):3000-3009. Liu Z J, Li P F, Huang S W, et al. Effects of wheat straw-derived biochar application on soil carbon content under different tillage practices[J]. Environmental Science, 2021,42(6):3000-3009. [74] 韦思业.不同生物质原料和制备温度对生物炭物理化学特征的影响[D].北京:中国科学院大学, 2017. Wei S Y. Influence of biomass feedstocks and pyrolysis temperatures on physical and chemical properties of biochar[D]. Beijing:University of Chinese Academy of Sciences, 2017. [75] 张文丽,林启美,李贵桐,等.生物炭对两种植烟土壤活性有机碳的影响[J].中国土壤与肥料, 2022,(9):59-66. Zhang W L, Lin Q M, Li G T, et al. Effects of biochar on liable organic carbon in two tobacco growing soils[J]. Soil and Fertilizer Sciences in China, 2022,(9):59-66. [76] 樊洪,谢珊,龙天雨,等.刺梨果渣生物炭对白菜产量及品质和土壤性质的影响[J].环境科学, 2024,45(6):3543-3552. Fan H, Xie S, Long T Y, et al. Effects of Rosa roxburghii pomace biochar on yield and quality of Chinese cabbage and soil properties[J]. Environmental Science, 2024,45(6):3543-3552. [77] 郭忠云,王立鹏,周海东,等.生物炭对重金属钝化及抗性基因的影响[J].中国环境科学, 2024,44(4):2156-2165. Guo Z Y, Wang L P, Zhou H D, et al. Studies on the effects of biochar application on variation of heavy metals and antibiotic resistance genes[J]. China Environmental Science, 2024,44(4):2156-2165. [78] 王雪玉,李明,徐艳华,等.生物炭对设施连作土壤细菌群落结构及多样性的影响[EB/OL].分子植物育种, 2024,1-17.http://kns.cnki. net/kcms/detail/46.1068.S.20240405.1211.006.html. Wang X Y, Li M, Xu Y H, et al. Effects of biochar on the structure and diversity of soil bacterial community in continuous cropping facilities[EB/OL]. Molecular Plant Breeding, 2024,1-17.http://kns.cnki.net/kcms/detail/46.1068.S.20240405.1211.006.html. [79] 范萍.微塑料对土壤溶解性有机质组成和结构的影响[D].南昌:南昌大学, 2022. Fan P. Effects of microplastics on soil soluble organic matter composition and structure[D]. Nanchang:Nanchang University, 2022. [80] 胡梦颖,张鹏鹏,徐进力,等.CEC前处理系统-凯氏定氮仪快速测定土壤中的阳离子交换量[J].物探与化探, 2023,47(2):458-463. Hu M Y, Zhang P P, Xu J L, et al. Rapid determination of soil cation exchange capacity using a cation exchange capacity pretreatment system and a Kjeldahl apparatus[J]. Geological and Geophysical Exploration, 2023,47(2):458-463. [81] 李尚珂,胡嘉源,陈岩,等.稻壳和稻壳生物炭对镉污染土壤肥力及镉有效性的影响[J].中国土壤与肥料, 2023,(12):78-85. Li S K, Hu J Y, Chen Y, et al. Effects of rice hull and rice hull biochar on soil fertility and availability of cadmium in Cd contaminated soil[J]. Soil and Fertilizer Sciences in China, 2023,(12):78-85. [82] Randolph P, Bansode R R, Hassan O A, et al. Effect of biochars produced from solid organic municipal waste on soil quality parameters[J]. Journal of Environmental Management, 2017,192:271-280. [83] 孙远,陈敏,周育智,等.改性生物炭对镉砷复合污染土壤的修复研究进展[J].江苏农业科学, 2024,52(2):1-11. Sun Y, Chen M, Zhou Y Z, et al. Research progress of modified biochar for remediation of cadmium-arsenic contaminated soils[J]. Jiangsu Agricultural Sciences, 2024,52(2):1-11. [84] 冉泰山,龙健,廖洪凯,等.生物炭施用对微塑料污染石灰性土壤理化性质和细菌群落的影响[J].环境科学, 2023,44(8):4507-4518. Ran T A, Long J, Liao H K, et al. Effects of biochar application on physicochemical properties and bacterial communities of microplastic-contaminated calcareous soil[J]. Environmental Science, 2023,44(8):4507-4518. [85] 康明晖,赵保卫,李烨炜.生物炭对镉和镉铅复合污染土壤性质与镉形态变化的影响[J].现代化工, 2023,43:93-97,105. Kang M H, Zhao B W, Li Y W. Effects of biochar on properties of soil contaminated by cadmium alone or cadmium-lead jointly and changes of cadmium form[J]. Modern Chemical Industry, 2023,43:93-97,105. [86] Zhang L Y, Xiang Y Z, Jing Y M, et al. Biochar amendment effects on the activities of soil carbon, nitrogen, and phosphorus hydrolytic enzymes:A meta-analysis[J]. Environmental Science and Pollution Research, 2019,26(22):22990-23001. [87] 王金成,井明博,张绍鹏,等.不同生物质炭对陇东黄土高原石油污染土壤的修复作用[J].中国环境科学, 2020,40(6):2565-2576. Wang J C, Jing M B, Zhang S P, et al. Remediation effects of the different biochars on crude-oil contaminated soil in eastern Gansu Province of the Loess Plateau[J]. China Environmental Science, 2020, 40(6):2565-2576. [88] 杨如意,董艳红,肖鑫,等.生物炭负载氨氮对土壤碳排放、酶活性及微生物群落的影响[J].环境科学, 2024,45(6):3533-3542. Yang R Y, Dong Y H, Xiao X, et al. Effects of biochar-loaded ammonia nitrogen on soil carbon emissions, enzyme activity, and microbial communities[J]. Environmental Science, 2024,45(6):3533-3542. [89] 李开钰,宋理洪,张龑,等.生物质炭施用量与频率对黄壤养分和关键酶活性的影响[EB/OL].环境科学, 2024,1-19.DOI:10.13227/j.hjkx.202402127. Li K Y, Zhu L H, Zhang Y, et al. Effects of biochar application amount and frequency on yellow soil nutrients and key enzyme activities[J/OL]. Environmental Science, 2024,1-19.DOI:10.13227/j.hjkx. 202402127. [90] 王垚,胡洋,马友华,等.生物炭对镉污染土壤有效态镉及土壤酶活性的影响[J].土壤通报, 2020,51(4):979-985. Wang Y, Hu Y, Ma Y H, et al. Effect of biochar addition on soil available cadmium and enzyme activities[J]. Chinese Journal of Soil Science, 2020,51(4):979-985. [91] 邱芷莘.外源生物炭影响微塑料-土壤生态系统及其响应机制研究[D].东莞:东莞理工学院, 2023. Qiu Z X. Study on the impact of exogenous biochar on microplastic-soil ecosystem and its response mechanism[D]. Dongguan:Dongguan University of Technology, 2023. [92] Fang Z, Sallach J B, Hodson M E. Size-and concentration-dependent effects of microplastics on soil aggregate formation and properties[J]. Journal of Hazardous Materials, 2024,465:133395. [93] Elzobair A K, Stromberger E M, Ippolito A J, et al. Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol[J]. Chemosphere, 2016,142:145-152. [94] Khadem A, Raiesi F. Response of soil alkaline phosphatase to biochar amendments:Changes in kinetic and thermodynamic characteristics[J]. Geoderma, 2019,337:44-54. [95] 畅芳玲,张沛祯,姚宗路,等.不同改性玉米秸秆生物炭对黄土丘陵地区土壤水力特性的影响[EB/OL].环境科学, 2024,1-14.DOI:10. 13227/j.hjkx.202312105. Chang F L, Zhang P Z, Yao Z L, et al. Effects of different modified corn straw biochar on soil hydraulic properties in hilly loess areas[J/OL]. Environmental Science, 2024,1-14.DOI:10.13227/j.hjkx. 202312105. [96] 孙筱璐.不同气候和森林类型土壤有机碳组分差异特征[D].北京:北京林业大学, 2017. Sun X L. Variations in soil organic carbon fractions among forests of contrasting climate and stand types[D]. Beijing:Beijing Forestry University, 2017. [97] Zheng X, Zhao M, Oba B T, et al. Effects of organo-mineral complexes on Cd migration and transformation:From pot practice to adsorption mechanism[J]. International Journal of Environmental Science and Technology, 2022,20(1):1-8. [98] Guo X Y, Zhang S Z, Shan X Q, et al. Characterization of Pb, Cu, and Cd adsorption on particulate organic matter in soil[J]. Environmental Toxicology and Chemistry, 2006,25(9):2366-2373. [99] Xue C, Wang C P, Jiang F, et al. The effect of goethite aging on Cd adsorption:Constraints of mineral condensation and surface site density[J]. Journal of Hazardous Materials, 2024,476:134992. [100] Abuwatfa W H, Al-Muqbel D, Al-Othman A, et al. Insights into the removal of microplastics from water using biochar in the era of COVID-19:A mini review[J]. Case Studies in Chemical and Environmental Engineering, 2021,4:100151. [101] Siipola V, Pflugmacher S, Romar H, et al. Low-cost biochar adsorbents for water purification including microplastics removal[J]. Applied Sciences, 2020,10(3):788. [102] Tong M P, Li T F, Li M, et al. Cotransport and deposition of biochar with different sized-plastic particles in saturated porous media[J]. Science of the Total Environment, 2020,713:136387. [103] Wang F Y, Yang W W, Cheng P, et al. Adsorption characteristics of cadmium onto microplastics from aqueous solutions[J]. Chemosphere, 2019,235:1073-1080. [104] Huang C D, Ge Y, Yue S Z, et al. Microplastics aggravate the joint toxicity to earthworm Eisenia fetida with cadmium by altering its availability[J]. Science of the Total Environment, 2021,753:142042. [105] Turner A, Holmes L A. Adsorption of trace metals by microplastic pellets in fresh water[J]. Environmental Chemistry, 2015,12(5):600-610. [106] O'Connor D, Peng T Y, Zhang J L, et al. Biochar application for the remediation of heavy metal polluted land:A review of in situ field trials[J]. Science of The Total Environment, 2018,619:815-826. [107] 王德正,谭文韬,曾鹏,等.铁锰改性生物炭对水稻镉吸收和土壤微生物群落的影响[J].中国环境科学, 2024,44(4):2297-2308. Wang D Z, Tan W T, Zeng P, et al. Effects of Fe-Mn modified biochar on rice Cd uptake and soil microbial community[J]. China Environmental Science, 2024,44(4):2297-2308. [108] 李国锋,于金秋,王宏,等.基于机器学习方法的土壤典型重金属生物毒性和潜在生态风险预测[EB/OL].中国环境科学, 2024,1-13. DOI:10.19674/j.cnki.issn1000-6923.20240904.004. Li G F, Yu J Q, Wang H, et al. Prediction of Bio-toxicity and Potential Ecological Risk of Typical Heavy Metals in Soil Based on Machine Learning Methods[EB/OL]. China Environmental Science, 2024,1-13. DOI:10.19674/j.cnki.issn1000-6923.20240904.004. [109] Wei B L, Peng Y C, Jeyakumar P, et al. Soil pH restricts the ability of biochar to passivate cadmium:A meta-analysis[J]. Environmental Research, 2023,219:115110. [110] 戴超,刘强,胡建,等.南京沿江地区不同母质发育水稻根系土Cd活度制约因素[J].地质学刊, 2024,48(3):302-311. Dai C, Liu Q, Hu J, et al. Restriction factors of Cd activity in rice root soil developed from different parent materials along the Yangtze River in Nanjing[J]. Journal of Geology, 2024,48(3):302-311. [111] Zhao M, Li T X, Yu H Y, et al. Fractionation and chemical structure of dissolved organic matter in the rhizosphere associated with cadmium accumulation in tobacco lines (Nicotiana tabacum L.)[J]. Environmental Science and Pollution Research, 2020,27(15):17794-17803.