Spatial modeling of soil heavy metals in mining areas incorporating pollution source analysis
LI Shi-jie1,2,3, ZHANG Hui1,4, FENG Hui-hui1,2, WANG Zhen2
1. Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, Shenzhen 518000, China; 2. School of Earth Science and Information Physics, Central South University, Changsha 410083, China; 3. Central South Survey and Planning Institute, National Forestry and Grassland Administration, Changsha 410083, China; 4. Development Research Center for Natural Resource and Real Estate Assessment, Shenzhen 518000, China
Abstract:Taking a typical mining area as an example, statistical methods and Positive Matrix Factorization (PMF) were integrated to qualitatively and quantitatively identify key regional pollution sources and their contributors. A spatial model was further constructed, considering the spatial heterogeneity of soil heavy metal pollution and its dominant environmental drivers, with the best environmental variables and spatial scale being selected. The results revealed that the sources of soil heavy metal pollution were natural sources, exhaust gas emission sources, slag emission sources, wastewater emission sources, and transportation sources, with contributions of 8.40%, 9.55%, 1.73%, 55.37%, and 24.99% of the total pollution, respectively. Notably, atmospheric deposition (q = 0.113) and soil leaching (q=0.097) were identified as the primary input and output pathways for heavy metals. Among various spatial modeling strategies, the model that integrated both spatial pollution source characteristics and environmental variables demonstrated the highest predictive accuracy, outperforming the model based solely on dominant environmental factors or pollution source characteristics. The importance of incorporating spatial information to enhance model performance was highlighted by this finding. In particular, the Geographically Weighted Regression Kriging (GWRK) model was found to achieve superior predictive accuracy (mRadius=0.2916) when multiple data sources were integrated. Overall, a scientific foundation was provided for identifying high-risk soil pollution zones in mining regions, the understanding of ecological and environmental interactions between influencing factors and heavy metal contamination was enhanced, and valuable insights were offered for spatially targeted pollution control strategies.
[1] 刘春早,黄益宗,雷鸣,等.湘江流域土壤重金属污染及其生态环境风险评价[J].环境科学, 2012,33(1):260-265. Liu C Z, Huang Y Z, Lei M, et al. Soil contamination and assessment of heavy metals of Xiangjiang River Basin[J]. Environmental Science, 2012,33(1):260-265. [2] 李岩.典型工业聚集区土壤重金属污染特征及成因研究[D].北京:中国地质大学(北京), 2020. Li Y. Study on the characteristics and causes of heavy metal pollution in typical industrial areas[D]. China University of Geosciences (Beijing), 2020. [3] 梁啸.电子废物拆解区典型污染农田的重金属空间分布特征及风险分析[D].兰州:兰州交通大学, 2017. Liang X. Spatial distribution characteristics and risk analysis of heavy metals in typical contaminated farmland in e-waste dismantling areas[D]. Lanzhou Jiaotong University, 2017. [4] Zhao L, Xu Y F, Hou H, et al. Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China[J]. Science of the Total Environment, 2014,468:654-662. [5] 吴子豪,刘耀林,冯向阳,等.基于多尺度地理加权回归的土壤镉污染局部影响因子分析[J].地球信息科学学报, 2023,25(3):573-587. Wu Z H, Liu Y L, Feng X Y, et al. Analysis of local influencing factors of cadmium pollution in soil by using multi-scale geographically weighted regression[J]. Journal of Earth Information Science, 2023, 25(3):573-587. [6] 解雪峰,郭炜炜,濮励杰,等.基于多源辅助变量和随机森林模型的耕地土壤重金属含量空间分布预测[J].环境科学, 2024,45(1):386-395. Xie X F, Guo W W, Pu L J, et al. Prediction of spatial distribution of heavy metals in cultivated soil based on multi-source auxiliary variables and random forest model[J]. Environmental Science, 2024, 45(1):386-395. [7] Hamlett J M, Miller D A, Day R L, et al. Statewide GIS-based ranking of watersheds for agricultural pollution prevention[J]. Journal of Soil and Water Conservation, 1992,47(5):399-404. [8] 高梦绯.基于GIS的耕地土壤重金属污染评价与变化趋势研究[D].河南理工大学, 2023. Gao M F. Evaluation and change trend of heavy metal pollution in cultivated land based on GIS[D]. Henan Polytechnic University, 2023. [9] Karim Z, Qureshi B A, Mumtaz M, et al. Heavy metal content in urban. soils as an indicator of anthropogenic and natural influences on landscape of Karachi-A multivariate spatio-temporal analysis[J]. Ecological Indicators, 2014,42:20-31. [10] 张晓晶,张圣微,卢俊平,等.煤矿聚集区土壤重金属污染风险及PMF-HHR模型溯源[J].中国环境科学, 2024,44(11):6291-6301. Zhang X J, Zhang S W, Lu J P, et al. Risks of heavy metal contamination in soils of coal mining community and traceability based on PMF-HHR model[J]. China Environmental Science, 2024, 44(11):6291-6301. [11] 刘楠,唐莹影,陈盟,等.基于APCS-MLR和PMF的铅锌矿流域土壤重金属来源解析[J].中国环境科学, 2023,43(3):1267-1276. Liu N, Tang Y Y, Chen M, et al. Source apportionment of soil heavy metals in lead-zinc area based on APCS-MLR and PMF[J]. China Environmental Science, 2023,43(3):1267-1276. [12] 宣斌,王济,段志斌,等.铅同位素示踪土壤重金属污染源解析研究进展[J].环境科学与技术, 2017,40(11):17-21. Xuan B, Wang J, Duan Z B, et al. Advances in application of lead isotope to tracing soil heavy metal pollution[J]. Environmental Science and Technology, 2017,40(11):17-21. [13] 黄颖.不同尺度农田土壤重金属污染源解析研究[D].杭州:浙江大学, 2018. Huang Y. The exploring of heavy metal pollution source apportionment in various scale of agricultural soils[D]. Zhejiang University, 2018. [14] 胡克林,张凤荣,吕贻忠,等.北京市大兴区土壤重金属含量的空间分布特征[J].环境科学学报, 2004,(3):463-468. Hu K L, Zhang F R, Lü Y Z, et al. Spatial distribution of concentrations of soil heavy metals in Daxing county, Beijing[J]. Acta Scientiae Circumstantiae, 2004,(3):463-468. [15] 丁宁,王倩,孙英君.高斯序贯模拟与克里格插值2种土壤重金属污染分析方法的比较[J].安徽农业科学, 2012,40(7):4162-4164. Ding N, Wang Q, Sun Y J. Comparison between sequential Gaussian simulation and Kriging interpolation on soil heavy metal pollution[J]. Anhui Agricultural Sciences, 2012,40(7):4162-4164. [16] 赖涓涓,杨德钰,刘亮,等.银川市浅层表土重金属污染特征及源解析[J].中国环境科学, 2024,44(8):4496-4506. Lai J J, Yang D Y, Liu L, et al. Characteristics and source identification of heavy metal pollution in shallow topsoil in Yinchuan City[J]. China Environmental Science, 2024,44(8):4496-4506. [17] 殷雨竹,樊彦国,潘瑜春,等.北京地区大气重金属沉降污染特征与风险评价[J].中国环境科学, 2023,43(6):2763-2776. Yin Y Z, Fan Y G, Pan Y C, et al. Pollution characteristics and risk assessment of atmospheric heavy metal deposition in Beijing[J]. China Environmental Science, 2023,43(6):2763-2776. [18] 买买提·沙吾提,阿不都艾尼·阿不里,胡昕.干旱区绿洲农田土壤重金属含量高光谱反演[J].中国环境科学, 2024,44(4):2208-2216. Mamat S, Abduaini A B, Hu X. Hyperspectral inversion study of heavy metals content in soils of oasis farmland in arid region[J]. China Environmental Science, 2024, 44(4):2208-2216. [19] 卢维宏,刘娟,张乃明,等.设施菜地土壤重金属累积及影响因素研究[J].中国环境科学, 2022,42(6):2744-2753. Lu W H, Liu J, Zhang N M, et al. Study on the accumulation of heavy metals and influencing factors in the soil of facility vegetable fields[J]. China Environmental Science, 2022,42(6):2744-2753. [20] 王诚煜,李玉超,于成广,等.葫芦岛东北部土壤重金属分布特征及来源解析[J].中国环境科学, 2021,41(11):5227-5236. Wang C Y, Li Y C, Yu C G, et al. Distribution characteristics and sources of soil heavy metals in soils in the area of northeastern Huludao City[J]. China Environmental Science, 2021,41(11):5227-5236. [21] 韩志轩,王学求,迟清华,等.珠江三角洲冲积平原土壤重金属元素含量和来源解析[J].中国环境科学, 2018,38(9):3455-3463. Han Z X, Wang X Q, Chi Q H, et al. Occurrence and source identification of heavy metals in the alluvial soils of Pearl River Delta region, south China[J]. China Environmental Science, 2018,38(9):3455-3463. [22] 盛溢,薛玮真,应迪文,等.场地土壤镉污染排放清单与溯源--以铜冶炼厂为例[J].中国环境科学, 2024,44(8):4462-4474. Sheng Y, Xue W Z, Ying D W, et al. Constructing soil cadmium discharge inventory for source analysis--a case study in copper smelter[J]. China Environmental Science, 2024,44(8):4462-4474. [23] 袁鸣蔚,吴亦潇,牛志华,等.基于科技论文产出的源解析受体模型CMB、PMF比较综述.[C]//中国环境科学学会.2014中国环境科学学会学术年会(第六章).武汉大学资源与环境科学学院, 2014. Yuan M W, Wu Y X, Niu Z H, et al. A comparative review of source apportionment receptor models CMB and PMF based on scientific paper output[C]//Chinese Society of Environmental Sciences. 2014 China Environmental Science Society Academic Annual Conference (Chapter 6). School of Resources and Environmental Sciences, Wuhan University, 2014:6. [24] Song Y, Wang J, Ge Y, et al. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis:cases with different types of spatial data[J]. Giscience& Remote Sensing, 2020, 57(5):593-610. [25] 李黎,王永刚.地质统计学应用综述[J].勘探地球物理进展, 2006,(3):163-9,4. Li L, Wang Y G. Review of applications of geostatistics.[J]. Progress in Exploration Geophysics, 2006,(3):163-169,4. [26] 李晓军,李培楠,朱合华,等.基于贝叶斯克里金的地下空间多源数据建模[J].同济大学学报(自然科学版), 2014,42(3):406-412. Li X J, Li P N, Zhu H H, et al. Geomodeling with integration of multi-source data by Bayesian Kriging in underground space[J]. Journal of Tongji University (Natural Science Edition), 2014,42(3):406-412. [27] 张锦明,郭丽萍,张小丹.反距离加权插值算法中插值参数对DEM插值误差的影响[J].测绘科学技术学报, 2012,29(1):51-56. Zhang J M, Guo L P, Zhang X D. Effects of interpolation parameters in inverse distance weighted method on DEM accuracy[J]. Journal of Surveying Science and Technology, 2012,29(1):51-56. [28] 叶明亮.基于GIS与机器学习的铜陵市土壤重金属空间分析与预测[D].安徽农业大学, 2019. Ye M L. Spatial Analysis and Prediction of Heavy Metals in Soil of Tongling City based on GIS and Machine Learning[D]. Anhui Agricultural University, 2019. [29] 赵永存,于东升,赵彦锋,等.不同方法预测河北省土壤有机碳密度空间分布特征的研究[J].土壤学报, 2005,(3):379-385. Zhao Y C, Yu D S, Zhao Y F, et al. Different methods for prediction of spatial patterns of soil organic carbon density in Hebei Province, China[J]. Acta Pedologica Sinica, 2005,(3):379-385. [30] 方匡南,吴见彬,朱建平,等.随机森林方法研究综述[J].统计与信息论坛, 2011,26(3):32-38. Fang K N, Wu J B, Zhu J P, et al. A Review of technologies on random forests[J]. Statistical and Information Forum, 2011,26(3):32-38. [31] 卢宾宾,葛咏,秦昆,等.地理加权回归分析技术综述[J].武汉大学学报(信息科学版), 2020,45(9):1356-1366. Lu B B, Ge Y, Qin K, et al. A review on geographically weighted regression[J]. Journal of Wuhan University (Information Science Edition), 2020,45(9):1356-1366. [32] Yang S H, Liu F, Song X D, et al. Mapping topsoil electrical conductivity by a mixed geographically weighted regression kriging:A case study in the Heihe River Basin, northwest China[J]. Ecological Indicators, 2019,102:252-264. [33] 张军,高煜,王国兰,等.典型河谷城市土壤重金属含量空间分异及其影响因素[J].生态环境学报, 2021,30(6):1276-1285. Zhang J, Gao Y, Wang G L, et al. Spatial differentiation and influencing factors of heavy metal content in soils of typical river valley city[J]. Ecological Environment Science, 2021,30(6):1276-1285. [34] 李雨,韩平,任东,等.基于地理探测器的农田土壤重金属影响因子分析[J].中国农业科学, 2017,50(21):4138-4148. Li Y, Han P, Ren D, et al. Influence factor analysis of farmland soil heavy metal based on the geographical detector[J]. Chinese Agricultural Sciences, 2017,50(21):4138-4148. [35] Chen Q, Mcroberts R E, Wang C W, et al. Forest aboveground biomass mapping and estimation across multiple spatial scales using model-based inference[J]. Remote Sensing of Environment, 2016,184:350-360. [36] 高中原,肖荣波,王鹏,等.融合自然-人为因子改进回归克里格对土壤镉空间分布预测[J].环境科学, 2021,42(1):343-352. Gao Z Y, Xiao R B, Wang P, et al. Improved regression Kriging prediction of the spatial distribution of the soil cadmium by integrating natural and human Factors[J]. Environmental Science, 2021,42(1):343-352. [37] 杨顺华,张海涛,郭龙,等.基于回归和地理加权回归Kriging的土壤有机质空间插值[J].应用生态学报, 2015,26(6):1649-1956. Yang S H, Zhang H T, Guo L, et al. Spatial interpolation of soil organic matter using regression Kriging and geographically weighted regression Kriging[J]. Chinese Journal of Applied Ecology, 2015, 26(6):1649-1956.