Effects of landscape pattern in riparian buffer on water nitrogen concentrations in the South Tiaoxi River
CHEN Xue-bing1,2, WANG Shuo3,4, LIU Fu-ping1,3, MA Xiao-xue5,6, TIAN Lin-lin1,3,7, CHEN Jian1,3,7, LI Yan1,3, CAI Yan-jiang1,2
1. National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; 2. College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China; 3. College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; 4. CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; 5. College of Geosciences, Jiangsu Second Normal University, Nanjing 210013, China; 6. Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China; 7. Tianmushan Forest Ecosystem National Orientation Observation and Research Station of Zhejiang Province, Hangzhou 311300, China
Abstract:Based on field data from 2019 to 2022 in the South Tiaoxi River Watershed in the upper reaches of the Taihu Lake Basin, redundancy analysis (RDA) and non-parametric breakpoint analysis (nCPA) were employed to analyze the relationships between riverine nitrogen (N) concentrations and landscape pattern indices at different buffer scales, and identity the critical landscape threshold ranges affecting the river nitrate (NO3--N) concentration. The results showed that the total nitrogen (TN) concentration in the South Tiaoxi River exceeded the Class V surface water quality standard, with NO3--N as the predominant N pollutant. During the wet season, the concentrations of TN, dissolved total nitrogen (DTN), NO3--N, and dissolved organic nitrogen (DON) were significantly higher than those in the dry season, whereas ammonium nitrogen (NH4+-N) concentrations were lower. N concentrations were lower in the upstream compared to downstream. The landscape pattern indices in the buffer zones of 400m and 200m explained the largest variance in river N concentrations during the wet and dry seasons, respectively (89.49% and 90.97%). Based on the identified key thresholds of landscape pattern indices for significantly reducing the risk of NO3--N pollution in the watershed, the following suggestions are provided: the proportion of farmland, construction land, and Shannon diversity index (SDHI) in the buffer zone of 400m should be controlled within 0.25%, 1.75%, and 0.77, respectively; and the proportion of farmland and edge density (ED) in the buffer zone of 200m should be kept within 0.5% and 39m/hm2, simultaneously with the proportion of forest area exceeding 91.0%.
陈学兵, 王烁, 刘富平, 马小雪, 田琳琳, 陈健, 李彦, 蔡延江. 南苕溪河岸带景观格局对水体氮素浓度的影响[J]. 中国环境科学, 2025, 45(4): 1925-1938.
CHEN Xue-bing, WANG Shuo, LIU Fu-ping, MA Xiao-xue, TIAN Lin-lin, CHEN Jian, LI Yan, CAI Yan-jiang. Effects of landscape pattern in riparian buffer on water nitrogen concentrations in the South Tiaoxi River. CHINA ENVIRONMENTAL SCIENCECE, 2025, 45(4): 1925-1938.
[1] Maavara T, Lauerwald R, Laruelle G G, et al. Nitrous oxide emissions from inland waters:Are IPCC estimates too high?[J]. Global Change Biology, 2019,25(2):473-488. [2] 王书航,王雯雯,姜霞,等.蠡湖水体氮、磷时空变化及差异性分析[J].中国环境科学, 2014,34(5):1268-1276. Wang S H, Wang W W, Jiang X, et al. Spatial-temporal dynamic changes of nitrogen and phosphorus and difference analysis in water body of Lihu Lake[J]. China Environmental Science, 2014,34(5):1268-1276. [3] 龚小杰,王晓锋,刘婷婷,等.流域场镇发展下三峡水库典型入库河流水体碳、氮、磷时空特征及富营养化评价[J].湖泊科学, 2020, 32(1):111-123. Gong X J, Wang X F, Liu T T, et al. Spatial-temporal characteristics of carbon, nitrogen and phosphorus and eutrophication assessment in a typical river of Three Gorges Reservoir under the development of field towns[J]. Lake Science, 2020,32(1):111-123. [4] Xu M Z, Xu G C, Li Z B, et al. Effects of comprehensive landscape patterns on water quality and identification of key metrics thresholds causing its abrupt changes[J]. Environmental Pollution, 2023,333(15):122097. [5] 易帆,陈旻,何晓枫,等.流域土地利用分析中空间尺度差异对水质的影响[J].中国环境科学, 2023,43(8):4280-4291. Yi F, Chen M, He X F, et al. Effect of spatial scale differences on water quality in land use analysis[J]. China Environmental Science, 2023,43(8):4280-4291. [6] 马小雪,吴昊,秦伯强,等.长江经济带景观格局动态演变及其景观生态环境效应[J].地理科学, 2022,42(10):1706-1716. Ma X X, Wu H, Qin B Q, et al. Spatiotemporal change of landscape pattern and its eco-environmental response in the Yangtze River economic belt[J]. Scientia Geographica Sinica, 2022,42(10):1706-1716. [7] 袁淑方,王为东.太湖流域源头溪流氧化亚氮(N2O)释放特征[J].生态学报, 2012,32(20):6279-6288. Yuan S F, Wang W D. Characteristics of nitrous oxide (N2O) emission from a headstream in the upper Taihu Lake Basin[J]. Acta Ecologica Sinica, 2012,32(20):6279-6288. [8] Li Y, Mi W J, Ji L, et al. Urbanization and agriculture intensification jointly enlarge the spatial inequality of river water quality[J]. Science of the Total Environment, 2023,878:162559. [9] 袁淑方,王为东,董慧峪,等.太湖流域源头南苕溪河口生态工程恢复及其初期水质净化效应[J].环境科学学报, 2013,33(5):1475-1483. Yuan S F, Wang W D, Dong H Y, et al. Ecological engineering restoration at the confluence of South Tiaoxi Stream in the upper Taihu Lake and its water quality improvement[J]. Acta Scientiae Circumstantiae, 2013,33(5):1475-1483. [10] Seybold E, Mcglynn B. Hydrologic and biogeochemical drivers of dissolved organic carbon and nitrate uptake in a headwater stream network[J]. Biogeochemistry, 2018,138(1):23-48. [11] 庞爱萍,李春晖,易雨君.长江经济带农业种植-消费系统氮流时空格局演化规律与驱动机制[J].农业环境科学学报, 2021,40(2):408-420. Pang A P, Li C H, Yi Y J. Spatial-temporal patterns and driving forces of nitrogen flows for agricultural plantation-consumption system in Yangtze River Economic Belt[J]. Journal of Agro-Environment Science, 2021,40(2):408-420. [12] Wang Z, Wang Y Q, Ding X K, et al. Evaluation of net anthropogenic nitrogen inputs in the Three Gorges Reservoir Area[J]. Ecological Indicators, 2022,139:108922. [13] Jiang T T, Huo S L, Xi B D, et al. The influences of land-use changes on the absorbed nitrogen and phosphorus loadings in the drainage basin of Lake Chaohu, China[J]. Environmental Earth Sciences, 2013,71(9):4165-4176. [14] Wu J H, Lu J. Spatial scale effects of landscape metrics on stream water quality and their seasonal changes[J]. Water Research, 2021, 191(1):116811. [15] 吕乐婷,高晓琴,刘琦,等.东江流域景观格局对氮、磷输出的影响[J].生态学报, 2021,41(5):1758-1765. LÜ L T, Gao X Q, Liu Q, et al. Influence of landscape pattern on nitrogen and phosphorus output in the Dongjiang River Basin[J]. Acta Ecologica Sinica, 2021,41(5):1758-1765. [16] Deng L, Li W S, Liu X J, et al. Landscape patterns and topographic features affect seasonal river water quality at catchment and buffer scales[J]. Remote Sensing, 2023,15(5):1438. [17] Lee S W, Hwang S J, Lee S B, et al. Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics[J]. Landscape and Urban Planning, 2009,92(2):80-89. [18] Mainali J, Chang H. Landscape and anthropogenic factors affecting spatial patterns of water quality trends in a large river basin, South Korea[J]. Journal of Hydrology, 2018,564:26-40. [19] 周添红,苏思霖,马凯,等.典型区域土地利用/景观格局对黄河上游水体TN的影响[J].环境科学, 2024,45(10):5768-5776. Zhou T H, Su S L, Ma K, et al. Influence of Typical Regional Land Use/Landscape Pattern on Water TN of the Upper Yellow River[J]. Environmental Science, 2024,45(10):5768-5776. [20] 陈雨晴,席海洋,程文举,等.河岸缓冲区氮传输及移除机制研究进展[J].地球科学进展, 2022,37(10):1037-1048. Chen Y Q, Xi H Y, Cheng W J, et al. Research progress on the mechanisms of nitrogen transfer and removal in riparian buffer zones[J]. Advances in Earth Science, 2022,37(10):1037-1048. [21] 袁鹏,刘瑞霞,俞洁,等.《浙江省河流生态缓冲带划定与生态修复技术指南(试行)》解读[J].环境工程技术学报, 2021,11(1):1-5. Yuan P, Liu R X, Yu J, et al. Interpretation of technical guidelines for delineation and ecological restoration of riparian buffers of rivers in Zhejiang Province (Trial)[J]. Journal of Environmental Engineering Technology, 2021,11(1):1-5. [22] Shen Z Y, Hou X S, Li W, et al. Impact of landscape pattern at multiple spatial scales on water quality:A case study in a typical urbanised watershed in China[J]. Ecological Indicators, 2015,48:417-427. [23] 张微微,李晓娜,王超,等.密云水库上游白河地表水质对不同空间尺度景观格局特征的响应[J].环境科学, 2020,41(11):4895-4904. Zhang W W, Li X N, Wang C, et al. Water quality response to landscape pattern at different spatial scales in Baihe River in the upper reaches of the Miyun Reservoir[J]. Environmental Science, 2020, 41(11):4895-4904. [24] 李冲,张璇,吴一帆,等.京津冀生态屏障区景观格局变化及其对水源涵养的影响[J].中国环境科学, 2019,39(6):2588-2595. Li C, Zhang X, Wu Y F, et al. Landscape pattern change of the ecological barrier zone in Beijing-Tianjin-Hebei region and its impact on water conservation[J]. China Environmental Science, 2019,39(6):2588-2595. [25] Pak H Y, Chuah C J, Yong E L, et al. Effects of land use configuration, seasonality and point source on water quality in a tropical watershed:A case study of the Johor River Basin[J]. Science of The Total Environment, 2021,780(1):146661. [26] 胡琳,李思悦.不同空间尺度土地利用结构与景观格局对龙川江流域水质的影响[J].生态环境学报, 2021,30(7):1470-1481. Hu L, Li S Y. Scale effects of land use structure and landscape pattern on water quality in the Longchuan River Basin[J]. Ecology and Environmental Sciences, 2021,30(7):1470-1481. [27] 徐建锋,尹炜,闫峰陵,等.农业源头流域景观异质性与溪流水质耦合关系[J].中国环境科学, 2016,36(10):3193-3200. Xu J F, Yin W, Yan F L, et al. The coupling relationship between landscape heterogeneity and stream water quality in an agricultural catchment[J]. China Environmental Science, 2016,36(10):3193-3200. [28] 冯冰聪,马杰,刘勇,等.氮素在农田土壤中迁移转化的研究进展[J/OL].农业资源与环境学报, 2024:1-15.DOI:10.13254/j.jare.2023. 0825. Feng B C, Ma J, Liu Y, et al. Research progress of nitrogen transport and transformation in farmland soils[J]. Research progress of nitrogen transport and transformation in farmland soils, 2024:1-15.DOI:10. 13254/j.jare.2023.0825. [29] Qin C, Wright A L, Ma L H, et al. Improving nitrogen-use efficiency by using ridge tillage in rice paddy soils[J]. Soil Use and Management, 2022,38(1):528-536. [30] 王维刚,史海滨,李仙岳,等.基于改进SWAT模型的灌溉-施肥-耕作对乌梁素海流域营养物负荷及作物产量的影响[J],湖泊科学, 2022,34(5):1505-1523. Wang W G, Shi H B, Li Y Y, et al. Effects of irrigation-fertilization-tillage on nutrient loading and crop yield in Ulansuhai watershed based on improved SWAT model[J]. Journal of Lake Sciences, 2022, 34(5):1505-1523. [31] Nobre R L G, Caliman A, Cabral C R, et al. Precipitation, landscape properties and land use interactively affect water quality of tropical freshwaters[J]. Science of the Total Environment, 2020,716(10):137044. [32] Clément F, Ruiz J, Rodríguez M A, et al. Landscape diversity and forest edge density regulate stream water quality in agricultural catchments[J]. Ecological Indicators, 2017,72:627-639. [33] Mo W B, Yang N, Zhao Y L, et al. Impacts of land use patterns on river water quality:the case of Dongjiang Lake Basin, China[J]. Ecological Informatics, 2023,75:102083. [34] Wu J H, Lu J. Landscape patterns regulate non-point source nutrient pollution in an agricultural watershed[J]. Science of the Total Environment, 2019,669(15):377-388. [35] 陈学兵,贾珺杰,田琳琳,等.南苕溪流域水体溶解性有机碳、氮时空变化及驱动机制[J].环境科学学报, 2023,43(2):254-265. Chen X B, Jia J J, Tian L L, et al. Spatiotemporal changes and the driving mechanisms of dissolved organic carbon and nitrogen in water in Nantiaoxi River Watershed[J]. Acta Scientiae Circumstantiae, 2023,43(2):254-265. [36] 梁佳辉,田琳琳,周钟昱,等.太湖流域上游南苕溪水系夏秋季水体溶存二氧化碳和甲烷浓度特征及影响因素[J].环境科学, 2021,42(6):2826-2838. Liang J H, Tian L L, Zhou Z Y, et al. Characteristics and drivers of dissolved carbon dioxide and methane concentrations in the Nantiaoxi River System in the upper reaches of the Taihu Lake Basin during summer-autumn[J]. Environmental Science, 2021,42(6):2826-2838. [37] 国家环境保护总局.水和废水监测分析方法.第4版[M].北京:中国环境科学出版社, 2002:240-260. The State Environmental Protection Administration. Water and wastewater monitoring analysis method[M]. 4th Edition. Beijing:China Environmental Science Press, 2002:240-260. [38] 杨莎莎,汤萃文,刘丽娟,等.流域尺度上河流水质与土地利用的关系[J].应用生态学报, 2013,24(7):1953-1961. Yang S S, Tang C W, Liu L J, et al. Relationships between river water quality and land use type at watershed scale[J]. Chinese Journal of Applied Ecology, 2013,24(7):1953-1961. [39] 李昆,王玲,孙伟,等.城市化下景观格局对河流水质变化的空间尺度效应分析[J].环境科学学报, 2020,40(1):343-352. Li K, Wang L, Sun W, et al. Spatial effect of landscape pattern on river water quality under urbanization[J]. Acta Scientiae Circumstantiae, 2020,40(1):343-352. [40] Zanaga D, Van De Kerchove R, Daems D, et al. ESA WorldCover 10m 2021v200[Z]. 2022.https://pure.iiasa.ac.at/id/eprint/18478/. [41] 徐明珠,徐国策,乔海亮,等.秦岭南麓小流域不同空间尺度景观格局对水质的影响分析[J].环境科学学报, 2023,43(10):396-406. Xu M Z, Xu G C, Qiao H L, et al. Influence of different spatial scale landscape patterns on water quality in a small watershed at the southern foot of the Qinling Mountains[J]. Acta Scientiae Circumstantiae, 2023,43(10):396-406. [42] Qian S S, King R S, Richardson C J. Two statistical methods for the detection of environmental thresholdsv[J]. Ecological Modelling, 2003,166(1/2):87-97. [43] 田琳琳,朱波,汪涛,等.川中丘陵区农田源头沟渠玉米季中氧化亚氮排放及其影响因素[J].环境科学, 2017,38(5):2074-2083. Tian L L, Zhu B, Wang T, et al. Nitrous oxide emissions and its influencing factors from an agricultural headwater ditch during a maize season in the hilly area of central Sichuan Basin[J]. Environmental Science, 2017,38(5):2074-2083. [44] Meng C, Liu H Y, Wang Y, et al. Landscape pattern exhibits threshold-driven effect on nitrogen export of typical land use in subtropical hilly watershed under specific hydrological regimes[J]. Journal of Cleaner Production, 2023,419(20):138322. [45] De Mello K, Valente R A, Randhir T O, et al. Effects of land use and land cover on water quality of low-order streams in Southeastern Brazil:Watershed versus riparian zone[J]. Catena, 2018,167:130-138. [46] 郭玉静,王妍,刘云根,等.普者黑岩溶湖泊湿地湖滨带景观格局演变对水质的影响[J].生态学报, 2018,38(5):1711-1721. Guo Y J, Wang Y, Liu Y G, et al. The effects of landscape pattern evolution in Puzhehei karst lake wetland littoral zone on water quality[J]. Acta Ecologica Sinica, 2018,38(5):1711-1721. [47] Gu Q, Hu H, Ma L G, et al. Characterizing the spatial variations of the relationship between land use and surface water quality using self-organizing map approach[J]. Ecological Indicators, 2019,102:633-643. [48] 陈昕,邹俊,王伟民,等.多介质土壤层系统处理旅游型村镇生活污水的示范研究[J].生态与农村环境学报, 2011,27(4):81-86. Chen X, Zhou J, Wang W M, et al. Demonstration research on treatment of domestic sewage from tourism-oriented rural towns and villages with multi-soil-layering (MSL) system[J]. Journal of Ecology and Rural Environment, 2011,27(4):81-86. [49] Xu Y Y, Lu X W, Chen F K, et al. Field investigation on rural domestic sewage discharge in a typical village of the Taihu Lake Basin[J]. IOP Conf. Series:Earth and Environmental Science, 2020,546(3):032031. [50] Ding J, Jiang Y, Liu Q, et al. Influences of the land use pattern on water quality in low-order streams of the Dongjiang River basin, China:A multi-scale analysis[J]. Science of the Total Environment, 2016,551-552(1):205-216. [51] Shi P, Zhang Y, Li Z B, et al. Influence of land use and land cover patterns on seasonal water quality at multi-spatial scales[J]. Catena, 2017,151:182-190. [52] 胡丛巧,迪丽努尔·阿吉,李茹霞,等.博斯腾湖不同时空尺度下土地利用景观格局对水质的影响[J].水生态学杂志, 2025,46(1):34-44. Hu C Q, Dilinuer A, Li R X, et al. Effects of land use landscape pattern on water quality in Bosten Lake at different temporal and spatial scales[J]. Journal of Hydroecology, 2025,46(1):34-44. [53] Amaral Y T, Santos E M D, Ribeiro M C, et al. Landscape structural analysis of the Lençóis Maranhenses national park:implications for conservation[J]. Journal for Nature Conservation, 2019,51:125725. [54] Sun Y W, Guo Q H, Liu J, et al. Scale effects on spatially varying relationships between urban landscape patterns and water quality[J]. Environmental Management, 2014,54(2):272-287. [55] Qiu J X, Turner M G. Importance of landscape heterogeneity in sustaining hydrologic ecosystem services in an agricultural watershed[J], Ecosphere, 2015,6(11):1-19.