Phosphorus adsorption performance of biomass ash filter material
YU Zi-jun1, YU Jia-hang1, ZHU Jun-yi1, HOU Cun1, QU Zhi-chao1, NIU Wen-juan1, AI Ping1, FENG Yao-ze1, LIU Nian1,2
1. College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; 2. Key Laboratory of Aquaculture Facilities Engineering &Agricultural Equipment Laboratory of the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
Abstract:A new block filter material with well-developed pores and stable chemical properties was prepared from a biomass ash by short-term and high-temperature sintering. The phosphorus adsorption properties, as well as the kinetics and thermodynamic behaviors, of this material were investigated in this paper. The results of the static adsorption experiments show that the biomass ash filter achieved higher phosphorus adsorption per unit under conditions of higher initial phosphorus concentration, higher reaction temperature, longer adsorption time, or lower solid-liquid ratio. Among these parameters, the solid-liquid ratio was the primary controlling parameter affecting phosphorus adsorption by the filter material. The maximum adsorption per unit of the filter material reached 7.72mg/g, when the initial concentration of phosphorus was 90mg/L, the reaction temperature was 55℃, the adsorption time was 1250min, the pH was 3, and the solid-liquid ratio was 1:200(g:mL). The surface of the material exhibited a heterogeneous structure, and its phosphorus adsorption was primarily driven by multilayer physical endothermic adsorption, supplemented by monolayer or multilayer spontaneous chemical adsorption. Under the dynamic adsorption conditions, the phosphorus adsorption capacity of this filter material per unit was 9.8, 22.27 and 27.22 times that of three common commercial filter materials, including coconut shell biochar, ceramsite and natural zeolite, respectively. This indicates excellent adsorption properties, enabling water purification while achieving biomass ash disposal and recycling, making it highly valuable for promotion.
[1] 谷树朋,刘永江,魏鹏.生物质直燃发电机组装机方案分析[J].电站系统工程, 2024,40(2):71-72. Gu S P, Liu Y J, Wei P. Analysis of biomass direct-fired generator set installation[J]. Power System Engineering, 2024,40(2):71-72. [2] 蔡星,朱宝贵,朱研,等.生物质灰蒸压加气混凝土的结构与性能[J].江苏建材, 2023,193(2):23-25. Cai X, Zhu B G, Zhu Y, et al. Structure and properties of biomass ash autoclaved aerated concrete[J]. Jiangsu Building Materials, 2023,193(2):23-25. [3] 任科.生物质锅炉飞灰分离处置及未燃尽炭应用实验研究[D].济南:山东大学, 2020. Ren K. Experimental study on separation and disposal of fly ash from biomass boiler and applicantions of unburned carbon[D]. Jinan:Shandong University, 2020. [4] 王侃,王子芳,高明,等.不同pH条件下生物质灰渣中K+释放动力学研究[J].中国生态农业学报, 2014,22(2):171-176. Wang K, Wang Z F, Gao M, et al. Analysis of K+ release kinetics of biomass ash with different pH[J]. Chinese Journal of Eco-Agriculture, 2014,22(2):171-176. [5] 刘彬彬,高明,王侃,等.不同生物质灰渣填充密度下处理生活废水的效果研究[J].水土保持学报, 2015,29(6):296-300. Liu B B, Gao M, Wang K, et al. Study on the treatment effect of biomass ash on domestic wastewater under different filling density[J]. Journal of Soil and Water Conservation, 2015,29(6):296-300. [6] 施剑豪.TiO2/活性炭纳米纤维滤材的制备及其过滤性能的研究[D].上海:东华大学, 2015. Shi J H. Preparation and filtration properties of TiO2/activated carbon nano fiber filter material[D]. Shanghai:Donghua University, 2015. [7] 闫有旺.21世纪绿色可再生资源--生物质[J].贵州化工, 2003, 28(5):1-3. Yan Y W. Green and regenerated resource in 21st century:biomass[J]. Guizhou Chemical Industry, 2003,28(5):1-3. [8] 涂冬冬,谢宝庚.利用吉安市的生物质电厂灰渣来改良当地土壤的研究[J].广东化工, 2020,47(22):49-52. Tu D D, Xie B G. Research on using ash from biomass power plant in Ji'an to improve local soil[J]. Guangdong Chemical Industry, 2020,47(22):49-52. [9] 王丽,何东东,朱启法,等.生物质灰调理剂对烟田土壤性质及烟草生长和养分含量及烟叶品质的影响[J].安徽农业大学学报, 2024, 51(2):297-304. Wang L, He D D, Zhu Q F, et al. Effects of biomass ash conditioner on soil properties, tobacco growth and nutrient content and tobacco leaf quality in tobaacco fields[J]. Journal of Anhui Agrictural University, 2024,51(2):297-304. [10] 王侃.生物质灰渣对生活污水处理效果的研究[D].重庆:西南大学, 2014. Wang K. Study on sewage treatment by biomass ash[D]. Chongqin:Southwest University, 2014. [11] Ruan Z, Di J Z, Dong Y R, et al. Phosphate and ammonia nitrogen recovery from sewage sludge supernatants by coupled MgO-biomass ash and its potential as heavy metal adsorbent[J]. Araban Journal of Chemisrty, 2023,16(8):104945. [12] 李涛,王华,徐佳军,等.MIL-100(Fe)光芬顿催化剂的制备与循环使用研究[J].功能材料, 2024,55(5):5147-5151,5176. Li T, Wang H, Xu J J. Preparation of MIL-100(Fe) photo-fenton catalysts and their recyclability[J]. Journal of Functional Materials, 2024,55(5):5147-5151,5176. [13] 金宜英,杜欣,王志玉,等.采用污水厂污泥制陶粒的烧结工艺及配方研究[J].中国环境科学, 2009,29(1):17-21. Jin Y Y, Du X, Wang Z Y, et al. Research on technology and batch formula of sintering municipal sewage sludge for manufacturing haydite.[J]. China Environmental Science, 2009,29(1):17-21. [14] 杨慧,王念,杨尚琦,等.冷压压力对高温烧结NiTi形状记忆合金显微组织及力学性能的影响[J].广州化工, 2022,50(17):66-68. Yang H, Wang N, Yang S Q, et al. Effect of cold pressing pressure on microstrucyure and mechanical properties of high temperature sintered NiTi shape memory alloy[J]. Guangzhou Chemical Industry, 2022, 50(17):66-68. [15] 刘思强,信欣,杨雯钰,等.不同热解温度BC对BAF处理水产养殖废水的影响机制[J].中国环境科学, 2023,43(3):1131-1141. Liu S Q, Xin X, Yang W Y. Influence mechanisms of BC filters of different pyrolysis temperatures on BAFs treating aquaculture wastewater.[J]. China Environmental Science, 2023,43(3):1131-1141. [16] GB/T 11893-89水质总磷的测定钼酸铵分光光度法[S]. GB/T 11893-89 Water quality-Determination of total phosphorus-Ammonium molybdate spectrophotometric method[S]. [17] 牟陈亚,何亮,李清毅,等.固化飞灰形状及填埋方式对重金属浸出的影响[J].中国环境科学, 2020,40(4):1601-1608. Mou C Y, He L, Li Q Y, et al. Effects of solidified Fly Ash Shape and Landfill Method on Leaching of Heavy Metals[J]. China Environmental Science, 2020,40(4):1601-1608. [18] HJ557-2009固体废物浸出毒性浸出方法水平震荡法[S]. HJ557-2009 Solid waste-Extraction procedure for leaching toxicity-Horizontal vibration method[S]. [19] Largitte L, Pasquier R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon[J]. Chemical Engineering Research Design, 2016,109:495-504. [20] Wang J L, Guo X. Adsorption isotherm models:Classification, physical meaning, application and solving method[J]. Chemosphere, 2020,258:127279. [21] Inyinbor A A, Adekola F A, Olatunji G A. Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp[J]. Water Resources Industry, 2016,15:14-27. [22] Zhang L, Zeng Y X, Cheng Z J. Removal of heavy metal ions using chitosan and modified chitosan:A review[J]. Journal Moleculai Liquids, 2016,214:175-191. [23] Rimmy S, Rachna B. Experimental and Modeling Process Optimization of Lead Adsorption on Magnetite Nanoparticles via Isothermal, Kinetics, and Thermodynamic Studies[J]. ACS Omega, 2020,5:10826-10837. [24] Weng X C, Ajmal M, Shehzad H, et al. Tungsten oxide encapsulated phosphate-rich porous alginate composites for efficient U (VI) capture:Insights into synthesis, adsorption kinetics and thermodynamics[J]. International Juornal Biological Macromolecules, 2024,261(2):129962. [25] Behera A K, Shadangi K P, Sarangi P K. Efficient removal of rhodamine B dye using biochar as an adsorbent:Study the performance, kinetics, thermodynamics, adsorption isotherms and its reusability[J]. Chemosphere, 2024,354:141702. [26] Zhou T X, Zhang W W, Shen Y J, et al. Progress in the change of ash melting behavior and slagging characteristics of co-gasification of biomass and coal:A review[J]. Journal of Energy Institude, 2023, 111:101414. [27] 李小鸽,何少君,刘琼,等.高斯多峰拟合用于混合表面活性剂十二烷基硫酸钠和吐温80临界胶束浓度的测量[J].化学试剂, 2011, 33(6):528-530, 566. Li X G, He S J, Liu Q, et al. Determination of critical micelle concentration of lauryl sodium sulfate (SDS) and Twain 80mixed surfactant by multi-peaks gaussian fitting of visible absorption spectra[J]. Chemical Reagents, 2011,33(6):528-530,566. [28] Garg N, Wang K J, Martin S W. A Raman spectroscopic study of the evolution of sulfates and hydroxides in cement-fly ash pastes[J]. Cement Concrete Research, 2013,53:91-103. [29] 李子杰,何峰,范云飞,等.CaO含量对CBAS玻璃/Al2O3低温共烧陶瓷的影响[J].硅酸盐通报, 2022,41(11):3969-397. Li Z J, He F, Fan Y F, et al. Effect of CaO content on CBAS glass/Al2O3 low temperature co-fired ceramic[J]. Bulletin of the Chinese Ceramic Society, 2022,41(11):3969-397. [30] Prieto-Taboada N, Fdez-Ortiz de Vallejuelo S, Veneranda M, et al. Study of the soluble salts formation in a recently restored house of Pompeii by in-situ Raman spectroscopy[J]. Scientific Reports, 2018,8(1):1613. [31] Gupta V, Pathak D K, Siddique S, et al. Study on the mineral phase characteristics of various Indian biomass and coal fly ash for its use in masonry construction products[J]. Construction and Building Materials, 2020,235:117413. [32] Karunadasa K S P, Manoratne C H, Pitawala H M T G A, et al. Thermal decomposition of calcium carbonate (calcite polymorph) as examined by in-situ high-temperature X-ray powder diffraction[J]. Journal of Physics and Chemistry Solids, 2019,134:21-28. [33] Zhou H D, Xu K L, Yao X W, et al. Mineral transformations and molten mechanism during combustion of biomass ash[J]. Renewable Energy, 2023,216:119113. [34] 张勇,郭朝晖,王硕,等.二次铝灰烧结制备钙铝黄长石/镁铝尖晶石复相材料[J].中国有色金属学报, 2018,28(2):334-339. Zhang Y, Guo Z H, Wang S, et al. Sintering fabrication of gehlenite/magnesia-alumina spinel composites by secondary aluminum dross[J]. The Chinese Journal of Nonferrous Metals, 2018,28(2):334-339. [35] Raoov M, Mohamad S, Abas M R. Removal of 2, 4-dichlorophenol using cyclodextrin-ionic liquid polymer as a macroporous material:Characterization, adsorption isotherm, kinetic study, thermodynamics.[J]. Journal of Hazardous Materials, 2013,263(2):501-516. [36] Qin J, Yang C M, Cui C, et al. Ca2+ and OH− release of ceramsites containing anorthite and gehlenite prepared from waste lime mud[J]. Journal of Environmental Sciences, 2016,47:91-99. [37] Colorado H A, Wang Z, Yang J M. Inorganic phosphate cement fabricated with wollastonite, barium titanate, and phosphoric acid[J]. Cement and Concrete Composites, 2015,62:13-21. [38] 陈伟,钱觉时,刘军,等.污水污泥页岩烧结制品的重金属固化与水环境浸出稳定性[J].硅酸盐学报, 2012,40(10):1420-1426. Chen W, Qian J S, Liu J, et al. Solidification and leaching stability of heavy metals in sintered products made of shale and sewage sludge[J]. Journal of the Chinese Ceramic Society, 2012,40(10):1420-1426. [39] 毛华恺,余洋,张悦,等.生物炭光催化氧化-吸附协同降解亚硝酸盐[J].化工进展, 2024,43(8):4757-4765. Mao H K, Yu Y, Zhang Y, et al. Synergistic biochar photocatalytic oxidation-adsorption for nitrite degradation[J]. Chemical Industry and Engineering Progress, 2024,43(8):4757-4765. [40] Yadav D, Kumar P, Kapur M, et al. Phosphate removal from aqueous solutions by nano-alumina for the effective remediation of eutrophication[J]. Environmental Progress& Sustainable Energy, 2019,38(s1):S77-S85. [41] Vareda J P. On validity, physical meaning, mechanism insights and regression of adsorption kinetic models[J]. Journal of Molecular Liquids, 2023,376:121416. [42] 刘总堂,邵江,李艳,等.碱改性小麦秸秆生物炭对水中四环素的吸附性能[J].中国环境科学, 2022,42(8):3736-3743. Liu Z T, Shao J, Li Y, et al. Adsorption performance of tetracycline in water by alkali-modified wheat straw biochars.[J]. China Environmental Science, 2022,42(8):3736-3743. [43] Xu C L, Feng Y L, Li H R, et al. Adsorption and immobilization of phosphorus from eutrophic seawater and sediment using attapulgite-Behavior and mechanism[J]. Chemosphere, 2023,313:137390. [44] Li F P, Liu W, Jia Y B, Zhang Z S, et al. Study on sodium alginate and phosphoric acid modified biomass power plant ash as water treatment biofilm carrier[J]. Desalination and Water Treatment, 2019,154:305-311. [45] Wu F C, Tseng Ru L, Juang R S. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems[J]. Chemical Engineering Journal, 2009,150(2/3):366-373. [46] Foroutan R, Mohammadi R, Peighambardoust S J, et al. Application of nano-silica particles generated from offshore white sandstone for cadmium ions elimination from aqueous media[J]. Environmental Technology&Innovation, 2020,19:101031. [47] 张雨涵.吸附重金属型聚丙烯腈中空纤维膜的制备及其性能的研究[D].广州:华南理工大学, 2023. Zhang Y H. Preparation and properties of polyacrylonitrile hollow fiber membrane for heavy metals adsorption[D]. Guangzhou:South China University of Technology, 2023. [48] Li L C, Zhu Z H, Shi J X, et al. Simultaneous phosphorus removal and adsorbents recovery with Ca-PAC assisted adsorption dynamic membrane system:Removal performance and influencing factors[J]. Journal of Cleaner Production, 2023,384:135591. [49] 赵志鹏.赤泥改性生物炭对含磷废水中氮磷的回收及应用潜力研究[D].贵阳:贵州大学, 2022. Zhao Z P. Research on the recovery of nitrogen and phosphorus in phosphorus-containing wastewater by red mud-modified biochar and its potential application[D]. Guiyang:Guizhou University, 2022. [50] 刘秀芸,王刚,雷雨昕,等.巯基改性玉米秸秆对水中Cu (Ⅱ)的吸附特性[J].中国环境科学, 2022,42(3):1220-1229. Liu X Y, Wang G, Lei Y X, et al. Adsorption performance and mechanism of mercaptoacetyl corn straw for Cu (Ⅱ) in aqueous solution.[J]. China Environmental Science, 2022,42(3):1220-1229. [51] Alkhamis K A, Obeidat W M, Najib N M. Adsorption of allopurinol and ketotifen by chitosan[J]. AAPS PharmSciTech, 2001,2(1):27-33. [52] Nizam T, Krishnan K A, Joseph A, et al. Isotherm, kinetic and thermodynamic modelling of liquid phase adsorption of the heavy metal ions Zn (II), Pb (II) and Cr (VI) onto MgFe2O4nanoparticles[J]. Groundwater for Sustainable Development, 2024,25:101120. [53] 何乔,王亭亭,马娜,等.噻吩在双金属有机多孔材料Ni-Cu/BTC上吸附性能的研究[J].中国环境科学, 2015,35(7):1983-1989. He Q, Wang T T, Ma N, et al. Adsorptive performance of thiophene by bimetallic organic porous material Ni-Cu/BTC.[J]. China Environmental Science, 2015,35(7):1983-1989. [54] Huang W H, Wu R M, Chang J S, et al. Manganese ferrite modified agricultural waste-derived biochars for copper ions adsorption[J]. Bioresource Technology, 2023,367:128303. [55] Al-Ghouti M A, Da'ana D A. Guidelines for the use and interpretation of adsorption isotherm models:A review[J]. Journal of Hazardous Materials, 2020,393:122383. [56] Upadhyay U, Sreedhar I, Singh S A, et al. Recent advances in heavy metal removal by chitosan based adsorbents[J]. Carbohydrate Polymers, 2021,251:117000. [57] Kim Y, Kim C, Choi I, et al. Arsenic removal using mesoporous alumina prepared via a templating method[J]. Environmental Science& Technology, 2004,38(3):924-931. [58] Ayawei N, Ebelegi A N, Wankasi D. Modelling and interpretation of adsorption isotherms[J]. Journal of Chemistry, 2017,2017:11. [59] Han W, Hao H Y, Zhang Q Q, et al. Activated biochar loaded CuAl-layered double hydroxide composite for the removal of aniline aerofloat in wastewater:Synthesis, characterization, and adsorption mechanism[J]. Journal of Environmental Chemical Engineering, 2023,11(2):109293. [60] 严玉波,董晓丽,孙晓蕾,等.脱硫石膏基羟基磷灰石对Cu2+吸附性能的研究[J].中国环境科学, 2014,34(8):2040-2048. Yan Y B, Dong X L, Sun X L, et al. Cu2+ removal from wastewater using hydroxyapatite prepared from FGD gypsum.[J]. China Environmental Science, 2014,34(8):2040-2048. [61] Barhdadi I, Seddik N B, Allaoui I, et al. Detailed study of safranin-O adsorption on sepiolite clay:kinetics, thermodynamics, isotherms and theoretical calculations for optimal water treatment efficiency[J]. Journal of Molecular Structure, 2024,1308:138130. [62] 张亚青,王相,孟凡荣,等.基于熵权和层次分析法的VOCs处理技术综合评价[J].中国环境科学, 2021,41(6):2946-2955. Zhang Y Q, Wang X, Meng F R, et al. Comprehensive evaluation of VOCs processing technology based on entropy weight method and analytic hierarchy process.[J]. China Environmental Science, 2021, 41(6):2946-2955. [63] 孙伟,阚鑫,梁梅华.CO2和水蒸气活化椰壳炭表征与亚甲基蓝吸附性能研究[J].资源节约与环保, 2024,(7):114-117,122. Sun W, Kan X, Liang M H. Characterization of coconut shell charcoal activated by CO2 and water vapor and its adsorption performance for methylene blue[J]. Resource Conservation and Environmental Protection, 2024,(7):114,117,122. [64] Lin J Y, Li D, Kim M, et al. Process optimization for the synthesis of ceramsites in terms of mechanical strength and phosphate adsorption capacity[J]. Chemosphere, 2021,278:130329. [65] 陈梦翔.镧改性沸石的制备及其对河涌底泥中磷的钝化效能研究[D].广州:广州大学, 2021. Chen M X. Preparation of Lanthanum Modified Zeollite and Passivation Effect on Phosphorus in the Sediments of the river[D]. Guangzhou:Guangzhou University, 2021.