Abstract:Addressing the challenge of high in-situ adsorption temperature in solid waste pyrolysis, we developed a series of calcium-based solid adsorbents by incorporating various minerals into natural limestone. Experimental investigations on the single adsorption and cyclic adsorption of CO2 by these calcium-based solid adsorbents revealed that the adsorbent doped with 10% montmorillonite exhibited stable cyclic adsorption characteristics and a substantial adsorbent capacity, achieved a maximum CO2 adsorption ratio of 71.52%. Even after 10cycles, the adsorption capacity remained at 43.77%, concurrently elevated the heat value of pyrolysis gas to 14kJ/g. Consequently, the calcium-based adsorbents doped with 10% montmorillonite demonstrated effective CO2 capture and contribute to the enhanced calorific value of pyrolysis gas in solid waste co-pyrolysis.
顾春晗, 苏明雪, 李宁, 朱兵. 改性钙基吸附剂在热解原位捕集CO2中的性能[J]. 中国环境科学, 2024, 44(8): 4455-4461.
GU Chun-han, SU Ming-xue, LI Ning, ZHU Bing. Research on modified calcium based adsorbents for in-situ CO2 capture through pyrolysis. CHINA ENVIRONMENTAL SCIENCECE, 2024, 44(8): 4455-4461.
[1] 顾春晗,苏明雪,李宁,等.污泥有机/无机组分对污泥-PVC共热解氯元素迁移转化影响机制[J]. 中国环境科学, 2023,43(12):6386- 6392. Gu Chunhan, Su Mingxue, Li Ning, et al. Mechanism of the influence of organic/inorganic components of sludge on the migration and transformation of chlorine elements during the co pyrolysis of sludge PVC [J]. China Environmental Science, 2023,43(12):6386-6392. [2] 姚丽铭,王亚琢,范洪刚,等.餐厨垃圾处理现状及其热解技术研究进展[J]. 化工进展, 2023,42(7):3791-3801. Yao Liming, Wang Yazhuo, Fan Honggang, et al. Current status of kitchen waste treatment and research progress in pyrolysis technology [J]. Chemical Progress, 2023, 42(07): 3791-3801 [3] Tan K Q, Ahmad M A, Oh W D, et al. Valorization of hazardous plastic wastes into value-added resources by catalytic pyrolysis-gasification: A review of techno-economic analysis [J]. Renewable and Sustainable Energy Reviews, 2023,182:113346. [4] Chen X, Tang Y, Ke C, et al. CO2capture by double metal modified CaO-based sorbents from pyrolysis gases [J]. Chinese Journal of Chemical Engineering, 2022,43:40-49. [5] Tiwary S, Bhaumik S K. Theoretical approaches in hot CO2 capture using modified CaO-based sorbents: Review [J]. Journal of CO2 Utilization, 2022,57:101875. [6] Geng Y Q, Guo Y X, Fan B, et al. Research progress of calcium-based adsorbents for CO2 capture and anti-sintering modification [J]. Journal of Fuel Chemistry and Technology, 2021,49(7):998-1013. [7] César De Carvalho Pinto P, Voga Pereira G, Schiavo De Rezende L, et al. CO2 capture performance and mechanical properties of Ca(OH)2-based sorbent modified with MgO and (NH4)2HPO4 for Calcium Looping cycle [J]. Fuel, 2019,256:115924. [8] 梁文俊,杨岚,张艳,等.改性赤泥吸附剂吸附低浓度CO2研究[J]. 中国环境科学, 2023,43(6):2798-2805. Liang Wenjun, Yang Lan, Zhang Yan, et al. Research on the adsorption of low concentration CO2 by modified red mud adsorbent [J]. China Environmental Science, 2023,43(6):2798-2805. [9] Duan L, Yu Z, Erans M, et al. Attrition study of cement-supported biomass-activated calcium sorbents for CO2 capture [J]. Industrial & Engineering Chemistry Research, 2016,55(35):9476-9484. [10] Florin N H, Blamey J, Fennell P S. Synthetic CaO-based sorbent for CO2 capture from large-point sources [J]. Energy & Fuels, 2010,24(8): 4598-4604. [11] 李志新,王勤辉,方梦祥,等.掺杂高铝水泥钙基吸附剂碳酸化反应动力学特性研究[J]. 中国电机工程学报, 2022,42(6):2208-2216. Li Zhixin, Wang Qinhui, Fang Mengxiang, et al. Study on the kinetics of carbonation reaction of calcium based adsorbents doped with high alumina cement [J]. Chinese Journal of Electrical Engineering, 2022, 42(6):2208-2216. [12] 何涛,曹彬,胡军印,等.高温下钙基吸附剂吸附CO2的研究[J]. 化学工程, 2007,(12):8-11. He Tao, Cao Bin, Hu Junyin, et al. Research on Calcium based adsorbents adsorb CO2 at high temperatures [J]. Chemical Engineering, 2007,(12):8-11. [13] Hejazi B, Grace J R, Bi X, et al. Steam gasification of biomass coupled with lime-based CO2 capture in a dual fluidized bed reactor: A modeling study [J]. Fuel, 2014,117:1256-1266. [14] GB/T 28731-2012固体生物质燃料工业分析方法[S]. GB/T 28731-2012 Industrial analysis methods for solid biomass fuels [S]. [15] Zhang C, Li Y, He Z, et al. Microtubular Fe/Mn-promoted CaO- Ca12Al14O33 bi-functional material for H2 production from sorption enhanced water gas shift [J]. Applied Catalysis B: Environmental, 2022,314:121474. [16] 冯效迁,赵艺霖,赵永华,等.改性蒙脱土基催化剂研究进展[J]. 无机盐工业, 2023,55(5):24-30. Feng Xiaoqian, Zhao Yilin, Zhao Yonghua, et al. Research progress on modified montmorillonite based catalysts [J] Inorganic Salt Industry, 2023,55(5):24-30. [17] Wu K, Ye Q, Wu R, et al. Alkali metal-promoted aluminum-pillared montmorillonites: High-performance CO2 adsorbents [J]. Journal of Solid State Chemistry, 2020,291:121585. [18] 张照曦,钟梅,李建,等.改性蒙脱土对新疆和丰煤热解行为的影响[J]. 化工学报, 2022,73(1):402-410. Zhang Zhaoxi, Zhong Mei, Li Jian, et al. The effect of modified montmorillonite on the pyrolysis behavior of Xinjiang Hefeng coal [J]. Journal of Chemical Engineering, 2022,73(1):402-410.