1. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; 2. CNNC Xinjiang Mining Co., Ltd, Urumqi 830101, China; 3. School of Earth Science and Engineering, Hohai University, Nanjing 211100, China
Abstract:This study focuses on a decommissioned mining area of acid in-situ leaching in Xinjiang. By analyzing long-term groundwater monitoring data, a three-dimensional transient groundwater flow and contaminant solute transport model was developed to simulate the migration of contaminant species (U(Ⅵ) and SO42- ) in the ore-bearing aquifer. The study aims to provide a reasonable hydraulic control strategy to ensure the groundwater environmental safety in the decommissioned mining area. The results indicate that the post-decommissioning groundwater flow field is generally consistent with the direction of the natural flow field. High concentrations of U (Ⅵ) and SO42- remains extensively in the mining area and gradually migrate and diffuse downstream under the influence of groundwater dynamics. The constructed model successfully reproduces the observed groundwater level trends in the decommissioned mining area and accurately simulates the downstream migration and diffusion of U(Ⅵ) and SO42- from within the mining area. This demonstrates that hydraulic control is a crucial measure for ensuring the ecological safety of the downstream groundwater environment in future conditions. Analysis of three hydraulic control pumping schemes revealed that a combined internal and external pumping strategy yielded the best control results. Using a comprehensive evaluation method to quantitatively assess each scenario, the optimal solution was determined to involve installing six pumping wells downstream and three pumping wells within the mining area, each operating at a pumping rate of 60m3/day. This approach achieves effective source reduction within the site and hydraulic containment downstream, keeping contaminant migration within a 50m range at relatively low cost. By employing the developed numerical model to compare and select hydraulic control strategies under future planning conditions, this study provides a scientific basis for decision-making on groundwater environmental safety in the mining area and offers valuable insights for the remediation of similar decommissioned in-situ leaching uranium mines.
[1] Su X B, Liu Z B, Yao Y X, et al. Petrology, mineralogy, and ore leaching of sandstone-hosted uranium deposits in the Ordos Basin, North China [J]. Ore Geology Reviews, 2020,127,103768. [2] Zhou Y P, Li G R, Xu L L, et al. Uranium recovery from sandstonetype uranium deposit by acid in-situ leaching-An example from the Kujieertai [J]. Hydrometallurgy, 2020,191,105209 [3] 崔迪,杨冰,郭华明,等.砂岩含水介质中铀的吸附和迁移行为研究[J]. 地学前缘, 2022,29(3):217-226. Cui D, Yang B, Guo H M, et al. Adsorption and transport of uranium in porous sandstone media [J]. Earth Science Frontiers, 2022,29(3):217-226. [4] 连国玺,孙娟,李梦姣,等.我国地浸采铀地下水修复若干问题的思考[J]. 中国矿业, 2023,32(10):80-87. Lian G X, Sun J, Li M J, et al. Thoughts about the groundwater restoration of in-situ leaching uranium mining in China [J]. China Mining Magazine, 2023,32(10):80-87. [5] 孙占学,马文洁,刘亚洁,等.地浸采铀矿山地下水环境修复研究进展[J]. 地学前缘, 2021,28(5):215-225. Sun Z X, Ma W J, Liu Y J, et al. Research progress on groundwater contamination and remediation in in situ leaching uranium mines [J]. Earth Science Frontiers, 2021,28(5):215-225. [6] 左维,谭凯旋.新疆某地浸采铀矿山退役井场地下水污染特征[J]. 南华大学学报(自然科学版), 2014,28(4):28-34. Zuo W, Tan K X. The characteristics of groundwater contamination of a decommissioned wellfield in some in situ leaching uranium mine, Xinjiang, China [J]. Journal of University of South China(Science and Technology), 2014,28(4):28-34. [7] 陈约余.西北某酸法地浸采铀矿山退役采区的岩芯样特征及地下水理化性质分析[D]. 衡阳:南华大学, 2020. Chen Y Y. The characteristics of core samples and physicochemical properties of groundwater of a decommissioned area in some in acid in-situ leaching uranium mine, Northwest, China [D]. Hengyang: University of South China, 2020. [8] 何成垚,谭凯旋,李咏梅,等.新疆某铀矿酸法和CO2 地浸采区地下水的污染特征及机理[J]. 有色金属(冶炼部分), 2021,(6):53-59. He C Y, Tan K X, Li Y M, et al. Pollution characteristics and mechanism of groundwater of acid and CO2 in-situ leaching mining area of uranium deposit in Xinjiang, China [J]. Nonferrous Metals (Extractive Metallurgy), 2021,(6):53-59. [9] Abdelouas A. Uranium mill tailings: Geochemistry, mineralogy, and environmental impact [J]. Elements, 2006,2(6):335-341. [10] Lagneau V, Regnault O. Descostes M. Industrial deployment of reactive transport simulation: An application to uranium in situ recovery [J]. Reviews in Mineralogy and Geochemistry, 2019,85(1):499-528. [11] Liu Z Z, Li C G, Tan K X, et al. Study of natural attenuation after acid in situ leaching of uranium mines using isotope fractionation and geochemical data [J]. Science of the Total Environment. 2023,865,161033. [12] Mudd G M. Critical review of acid in situ leach uranium mining: 1. USA and Australia [J]. Environmental Geology, 2001,41(3/4):390-403. [13] Mudd G M. Critical review of acid in situ leach uranium mining: 2. Soviet Block and Asia [J]. Environmental Geology, 2001,41(3/4):404-416. [14] Borch T, Roche N, Johnson T E. Determination of contaminant levels and remediation efficacy in groundwater at a former in situ recovery uranium mine [J]. Journal of Environmental Monitoring, 2012,14(7): 1814-1823. [15] Saunders J A, Pivetz B E, Voorhies N, et al. Potential aquifer vulnerability in regions down-gradient from uranium in-situ recovery (ISR) sites [J]. Journal of Environmental Management, 2016,183:67-83. [16] 胡南,刘晶晶,马建洪,等.微生物群落修复酸法地浸采铀矿山退役采区地下水[J]. 中国有色金属学报, 2023,33(6):2031-2042. Hu N, Liu J J, Ma J H, et al. Remediation of groundwater in decommissioned mining area of acid in- situ leaching uranium mine by microbial community [J]. The Chinese Journal of Nonferrous Metals, 2023,33(6):2031-2042. [17] Anderson R T, Vrionis H A, Ortiz-Bernad I, et al. Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer [J]. Applied and Environmental Microbiology, 2003,69(10):5884-91. [18] Newsome L, Morris K, Lloyd J R. The biogeochemistry and bioremediation of uranium and other priority radionuclides [J]. Chemical Geology, 2014,363:164-184. [19] Reimus P W., Dangelmayr M A., Clay J T, et al. Uranium natural attenuation downgradient of an in situ recovery mine inferred from a cross-hole field test [J]. Environmental Science & Technology, 2019,53(13):7483-7493. [20] Ruiz O, Thomson B, Cerrato J M, et al. Groundwater restoration following in-situ recovery (ISR) mining of uranium [J]. Applied Geochemistry, 2019,(109):1-12. [21] 牛洁,张学礼.捷克Straz地浸铀矿山地下水恢复治理介绍[J]. 铀矿冶, 2016,35(2):110-117. Niu J, Zhang X L. Introduction to groundwater remediation after ISL mining of uranium at Straz pod Ralskem, Czech Republic [J]. Uranium Mining and Metallurgy, 2016,35(2):110-117. [22] 孟童,杨冰,连国玺,等.地浸铀矿山地下水修复技术研究进展[J]. 铀矿冶, 2023,42(4):39-46. Meng T, Yang B, Lian G X, et al. Research progress on groundwater remediation technology at in-situ leaching uranium mines [J]. Uranium Mining and Metallurgy, 2023,42(4):39-46. [23] 薛禹群,谢春红.地下水数值模拟[M]. 北京:科学出版社, 1997. Xue Y Q, Xie C H. Numerical simulation for groundwater [M]. Beijing: Science Press, 1997. [24] Merkel B.地下水中铀的反应运移模拟[J]. 地球科学, 2000,25(5): 451-455. Merkel B. Reactive transport modeling of uranium in groundwater [J]. Earth Science, 2000,25(5):451-455. [25] Bain J G., Mayer K U., Blowes D W, et al. Modelling the closurerelated geochemical evolution of groundwater at a former uranium mine [J]. Journal of Contaminant Hydrology. 2001,52(1):109-135. [26] 李春光,谭凯旋.地浸采铀地下水中放射性污染物迁移的模拟[J]. 南华大学学报(自然科学版), 2011,25(3):25-30. Li C G, Tan K X. Modeling the migration of radioactive contaminants in groundwater of in situ leaching uranium mine [J]. Journal of University of South China (Science and Technology), 2011,25(3):25-30. [27] 杨冰,孟童,郭华明,等.基于Kd的某酸法地浸铀矿山地下水铀运移模拟[J]. 地学前缘, 2024,31(3):381-391. Yang B, Meng T, Guo H M. Kd-based transport modeling of uranium in groundwater at an acid leaching uranium mine [J]. Earth Science Frontiers, 2024,31(3):381-391. [28] 焦友军,施小清,吴吉春.铀尾矿库渗漏地下含水层中六价铀的几种吸附反应运移模型对比[J]. 环境科学学报, 2015,35(10):3193-3201. Jiao Y J, Shi X Q, Wu J C. Comparison of uranium(VI) adsorption models in uranium mill tailings aquifer [J]. Acta Scientiae Circumstantiae, 2015,35(10):3193-3201. [29] Zheng C M, Wang P P. MT3DMS: A modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and user’s guide [R]. U S Army Engineer Research and Development Center, Vicksburg, Mississippi. 1999. [30] Wang P. Tan K X, Li Y M, et al. The adsorption of U(VI) by albite during acid in-situ leaching mining of uranium [J]. Journal of Radioanalytical and Nuclear Chemistry, 2022,331(5):2185-2193.