Impacts of urbanization on vegetation growth and surface urban heat island intensity in the Beijing-Tianjin-Hebei
ZHAO An-zhou1,2, PEI Tao2, CAO Sen3, ZHANG An-bing1, FAN Qian-qian1, WANG Jin-jie1
1. School of Mining and Geomatics, Hebei Universityof Engineering, Handan 056038, China;
2. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China;
3. Key Laboratory for Geo-Environmental Monitoring of Great Bay Area, Ministry of Natural Resources, Shenzhen University, Shenzhen 518060, China
Based on the MODIS land surface temperature (LST) product, Enhanced Vegetation Index (EVI) product and land cover data, the impacts of urbanization on seasonal variations of vegetation growth (ΔEVI) and surface urban heat island intensity (SUHII) during 2000~2015 for thirteen major cities in the Beijing-Tianjin-Hebei region were analyzed. The results are as follows:urbanization has negative impacts on vegetation growth (ΔEVI<0) in all seasons for the thirteen major cities, and the lowest ΔEVI (-0.131) was found in summer. The highest daytime and nighttime SUHII were also found in summer, and the values was 2.594℃ and 1.859℃, respectively. The average ΔEVI decreased during 2000~2015 with an rate of -0.0038/a, -0.0033/a, -0.0045/a, and -0.0018/a (P<0.01) for the growing season, spring, summer, and autumn, respectively (P<0.01). The daytime SUHII from 2000 to 2015 exhibited significant linear increase with a rate of 0.076, 0.093, and 0.106℃/a for growing season, spring and summer, respectively (P<0.01). The nighttime SUHII from 2000 to 2015 also exhibited significant linear increase with a rate of 0.05, 0.055, 0.049, 0.054, and 0.046℃/a for growing season, spring, summer, autumn and winter, respectively (P<0.01). The ΔEVI had significant negative correlations with all-time SUHII for all the thirteen cities in the Beijing, Tianjin and Hebei region (P<0.01), ranging from -0.959to -0.592. The maximum correlation coefficient between the daytime SUHII and ΔEVI was found in the growing season (-0.959), and the maximum correlation coefficient between nighttime SUHII and ΔEVI was found in the spring (-0.936).
赵安周, 裴韬, 曹森, 张安兵, 范倩倩, 王金杰. 京津冀城市扩张对植被和地表城市热岛的影响[J]. 中国环境科学, 2020, 40(4): 1825-1833.
ZHAO An-zhou, PEI Tao, CAO Sen, ZHANG An-bing, FAN Qian-qian, WANG Jin-jie. Impacts of urbanization on vegetation growth and surface urban heat island intensity in the Beijing-Tianjin-Hebei. CHINA ENVIRONMENTAL SCIENCECE, 2020, 40(4): 1825-1833.
朱诚,姜逢清,吴立,等.对全球变化背景下长三角地区城镇化发展科学问题的思考[J]. 地理学报, 2017,72(4):633-645. Zhu C, Jiang F Q, Wu L, et al. On the problems of urbanization in the Yangtze River Delta under the background of global change[J]. Acta Geographica Sinica, 2017,72(4):633-645.
[2]
王静,周伟奇,许开鹏,等.京津冀地区城市化对植被覆盖度及景观格局的影响[J]. 生态学报, 2017,37(21):7019-7029. Wang J, Zhou W Q, Xu K P, et al. Spatiotemporal pattern of vegetation cover and its relationship with urbanization in Beijing-Tianjin-Hebei megaregion from 2000 to 2010[J]. Acta Ecologica Sinica, 2017, 37(21):7019-7029.
[3]
陈军,陈利军,李然,等.基于GlobeLand30的全球城乡建设用地空间分布与变化统计分析[J]. 测绘学报, 2015,44(11):1181-1188. Chen J, Chen L J, Li R, et al. Spatial distribution and ten years change of global built-up areas derived from GlobeLand30[J]. Acta Geodaeticaet Cartographica Sinica, 2015,44(11):1181-1188.
[4]
李书娟,曾辉.快速城市化地区建设用地沿城市化梯度的扩张特征-以南昌地区为例[J]. 生态学报, 2004,24(1):55-62. Li S J, Zeng H. The expanding characteristics study of built-up land use along the urbanization gradient in quickly urbanized area:a case study of Nanchang area[J]. Acta Ecologica Sinica, 2004,24(1):55-62.
[5]
Zhou D C, Zhao S Q, Liu S G, et al. Spatiotemporal trends of terrestrial vegetation activity along the urban development intensity gradient in China's 32 major cities[J]. Science of the Total Environment, 2014,488:136-145.
[6]
Yao R, Wang L C, Huang X, et al. Greening in rural areas increases the surface urban heat island intensity[J]. Geophysical Research Letters, 2019,46(4):2204-2212.
[7]
Yao R, Wang L C, Gui X, et al. Urbanization effects on vegetation and surface urban heat islands in China's Yangtze River Basin[J]. Remote Sensing, 2017,9(6):540.
[8]
雷金睿,陈宗铸,吴庭天,等.1989~2015年海口城市热环境与景观格局的时空演变及其相互关系[J]. 中国环境科学, 2019,39(4):1734-1743. Lei J R, Chen Z Z, WU T T, et al. Spatio-temporal evolution and interrelationship between thermal environment and landscape patterns of Haikou City, 1989~2015[J]. China Environmental Sciencece, 2019, 39(4):1734-1743.
[9]
赵安周,刘宪锋,朱秀芳,等.2000~2014年黄土高原植被覆盖时空变化特征及其归因[J]. 中国环境科学, 2016,36(5):1568-1578. Zhao A Z, Liu X F, Zhu X F, et al. Spatiotemporal analyses and associated driving forces of vegetation coverage change in the Loess Plateau[J]. China Environmental Science, 2016,36(5):1568-1578.
[10]
Åström D O, Åström C, Rekker K, et al. High summer temperatures and mortality in Estonia[J]. PloS one, 2016,11(5):e0155045.
[11]
黄群芳,陆玉麒.北京地区城市热岛强度长期变化特征及气候学影响机制[J]. 地理科学, 2018,38(10):1715-1723. Huang Q F, Lu Y Q. Long-term trend of urban heat island intensity and climatological affecting mechanism in Bejing city[J]. Scientia Geographica Sinica, 2018,38(10):1715-1723.
[12]
宋世雄,刘志锋,何春阳,等.城市扩展过程对自然生境影响评价的研究进展[J]. 地球科学进展, 2018,33(10):1094-1104. Song S X, Liu Z F, He C Y, et al. Research progress on assessing the impacts of urban expansion on natural habitats[J]. Advances in Earth Science, 2018,33(10):1094-1104.
[13]
王桂林,杨昆,杨扬.京津冀地区不透水表面扩张对PM2.5污染的影响研究[J]. 中国环境科学, 2017,37(7):2470-2481. Wang G L, Yang K, Yang Y. The spatio-temporal variation of PM2.5 pollution and the its correlation with the impervious surface expansion[J]. China Environmental Science, 2017,37(7):2470-2481.
[14]
裴凤松,黎夏,刘小平,等.城市扩张驱动下植被净第一性生产力动态模拟研究-以广东省为例[J]. 地球信息科学学报, 2015,17(4):469-477. Pei F S, Li X, Liu X P, et al. Dynamic simulation of urban expansion and their effects on net primary productivity:A Scenario Analysis of Guangdong Province in China[J]. Journal of Geo-Information Science, 2015,17(4):469-477.
[15]
陈彬辉,冯瑶,袁建国,等.基于MODIS地表温度的京津冀地区城市热岛时空差异研究[J]. 北京大学学报:自然科学版, 2016,52(6):1134-1140. Chen B H, Feng Y, Yuan J G, et al. Spatiotemporal difference of urban heat island in Jing-Jin-Ji area based on MODIS land surface temperature[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016,52(6):1134-1140.
[16]
李孝永,匡文慧.京津冀1980~2015年城市土地利用变化时空轨迹及未来情景模拟[J]. 经济地理, 2019,39(3):187-194. Li X Y, Kuang W H. Spatio-temporal trajectories of urban land use change during 1980~2015 and future scenario simulation in Beijing-Tianjin-Hebei urban agglomeration[J]. Economic Geography, 2019, 39(3):187-194.
[17]
崔学刚,方创琳,张蔷.京津冀城市群环境规制强度与城镇化质量的协调性分析[J]. 自然资源学报, 2018,33(4):563-575. Cui X G, Fang C L, Zhang Q. Coordination between environmental regulation intensity and urbanization quality:case study of Beijing-Tianjin-Hebei urban agglomeration[J]. Journal of Natural Resources, 2018,33(4):563-575.
[18]
王海军,张彬,刘耀林,等.基于重心-GTWR模型的京津冀城市群城镇扩展格局与驱动力多维解析[J]. 地理学报, 2018,73(6):92-108. Wang H J, Zhang B, Lin Y L, et al. Multi-dimensional analysis of urban expansion patterns and their driving forces based on the center of gravity-GTWR model:A case study of the Beijing-Tianjin-Hebei urban agglomeration[J]. Acta Geographica Sinica, 2018,73(6):92-108.
[19]
刘纪远,宁佳,匡文慧,等.2010~2015年中国土地利用变化的时空格局与新特征[J]. 地理学报, 2018,73(5):789-802. Liu J Y, Ning J, Kuang W H, et al. Spatio-temporal patterns and characteristics of land-use change in China during 2010~2015[J]. Acta Geographica Sinica, 2018,73(5):789-802.
[20]
Dallimer M, Tang Z, Bibby P R, et al. Temporal changes in greenspace in a highly urbanized region[J]. Biology Letters, 2011,7(5):763-766.
[21]
Zhao M S, Heinsch F A, Nemani R R, et al. Improvements of the MODIS terrestrial gross and net primary production global data set[J]. Remote sensing of Environment, 2005,95(2):164-176.
[22]
Yao R, Cao J, Wang L C, et al. Urbanization effects on vegetation cover in major African cities during 2001~2017[J]. International Journal of Applied Earth Observation and Geoinformation, 2019,75:44-53.
[23]
Peng J, Ma J, Liu Q Y, et al. Spatial-temporal change of land surface temperature across 285 cities in China:An urban-rural contrast perspective[J]. Science of the Total Environment, 2018,635:487-497.
[24]
Zhang X Y, Friedl M A, Schaaf C B, et al. The footprint of urban climates on vegetation phenology[J]. Geophysical Research Letters, 2004,31(12):L12209.
[25]
Zhou D C, Zhao S Q, Zhang L X, et al. The footprint of urban heat island effect in China[J]. Scientific Reports, 2015,5:11160.
[26]
徐建华.现代地理学中的数学方法(第2版)[D]. 北京:高等教育出版社, 2002. Xu J H. Mathematics Methods in Modern Geography (2nd ed)[D]. Beijing:Higher Education Press, 2002.
[27]
Wang C Y, Myint S, Wang Z H, et al. Spatio-temporal modeling of the urban heat island in the Phoenix metropolitan area:Land use change implications[J]. Remote Sensing, 2016,8(3):185.
[28]
He C Y, Liu Z F, Xu M, et al. Urban expansion brought stress to food security in China:Evidence from decreased cropland net primary productivity[J]. Science of the Total Environment, 2017,576:660-670.
[29]
钱敏蕾,徐艺扬,李响,等.上海市城市化进程中热环境响应的空间评价[J]. 中国环境科学, 2015,35(2):624-633. QianM L, Xu Y Y, Li X, et al. An assessment of spatial thermal environmental response to rapid urbanization of Shanghai[J]. China Environmental Science, 2015,35(2):624-633.
[30]
Du Y Y, Sun T S, Peng J, et al. Direct and spillover effects of urbanization on PM2.5 concentrations in China's top three urban agglomerations[J]. Journal of Cleaner Production, 2018,190:72-83.