Dissolution kinetics of iron-containing particles: A review
TANG Yu-jing1,2, JIA Xiao-hong1, LI Rui1, ZHANG Guo-hua1, TANG Ming-jin1
1. State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Aerosol deposition is one of the primary sources of soluble iron in the open ocean, having significant impacts on the oceanic primary productivity. However, large uncertainties in the deposition flux of soluble iron from aerosol particles still remain, due to the following reasons:1) iron solubility varies largely for aerosol particles from different sources; 2) chemical reaction during atmospheric transport would significantly affect iron solubility of aerosol particles. Laboratory studies of dissolution kinetics of iron-containing particles in aqueous solutions in the past 20 years have been reviewed in this paper, to assess the enhancement effects on iron solubility by atmospheric aqueous reactions. Dissolution kinetics of iron-containing particles have been summarized for proton-promoted dissolution, ligand-promoted dissolution and photoreductive dissolution mechanisms. In addition, pH, anion components and light radiation jointly determined the dissolution mechanisms of iron-containing particles; and iron speciation is the major factor which determines the potential solubility of iron. Lastly, an outlook for future research was also presented.
Shi J H, Zhang J, Gao H W, et al. Concentration, solubility and deposition flux of atmospheric particulate nutrients over the yellow sea[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2013,97:43-50.
[2]
Jickells T D, Baker A R, Chance R. Atmospheric transport of trace elements and nutrients to the oceans[J]. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences[J]. 2016,374(2081):http://dx.doi.org/10.1098/rsta.2015.0286.
[3]
Moore C M, Mills M M, Arrigo K R, et al. Processes and patterns of oceanic nutrient limitation[J]. Nature Geoscience, 2013,6(9):701-710.
[4]
Baker A R, Croot P L. Atmospheric and marine controls on aerosol iron solubility in seawater[J]. Marine Chemistry, 2010,120(1-4):4-13.
[5]
Jickells T D, An Z S, Andersen K K, et al. Global iron connections between desert dust, ocean biogeochemistry, and climate[J]. Science, 2005,308(5718):67-71.
[6]
Shi Z, Krom M D, Jickells T D, et al. Impacts on iron solubility in the mineral dust by processes in the source region and the atmosphere:A review[J]. Aeolian Research, 2012,5:21-42.
[7]
Meskhidze N, Völker C, Al-Abadleh H A, et al. Perspective on identifying and characterizing the processes controlling iron speciation and residence time at the atmosphere-ocean interface[J]. Marine Chemistry, 2019, 217:http://dx.doi.org/10.1016/j.marchem.2019.103704.
[8]
Mahowald N M, Baker A R, Bergametti G, et al. Atmospheric global dust cycle and iron inputs to the ocean[J]. Global Biogeochemical Cycles, 2005,19(4):http://dx.doi.org/10.1029/2004gb002402.
[9]
Mahowald N M, Engelstaedter S, Luo C, et al. Atmospheric iron deposition:Global distribution, variability, and human perturbations[J]. Annual Review of Marine Science, 2009,1:245-278.
[10]
Shao Y P, Wyrwoll K H, Chappell A, et al. Dust cycle:An emerging core theme in earth system science[J]. Aeolian Research, 2011,2(4):181-204.
[11]
Maters E C, Delmelle P, Bonneville S. Atmospheric processing of volcanic glass:Effects on iron solubility and redox speciation[J]. Environmental Science & Technology, 2016,50(10):5033-5040.
[12]
Maters E C, Delmelle P, Gunnlaugsson H P. Controls on iron mobilization from volcanic ash at low pH:Insights from dissolution experiments and Mossbauer spectroscopy[J]. Chemical Geology, 2017,449:73-81.
[13]
Fu H, Lin J, Shang G, et al. Solubility of iron from combustion source particles in acidic media linked to iron speciation[J]. Environ Sci Technol, 2012,46(20):11119-11127.
[14]
Chen H, Laskin A, Baltrusaitis J, et al. Coal fly ash as a source of iron in atmospheric dust[J]. Environ Sci Technol, 2012,46(4):2112-2120.
[15]
Shi J H, Gao H W, Zhang J, et al. Examination of causative link between a spring bloom and dry/wet deposition of Asian dust in the yellow sea[J]. China. Journal of Geophysical Research:Atmospheres, 2012,117(D17):http://dx.doi.org/10.1029/2012JD017983.
[16]
Tagliabue A, Aumont O, Death R, et al. How well do global ocean biogeochemistry models simulate dissolved iron distributions?[J]. Global Biogeochemical Cycles, 2016,30(2):149-174.
[17]
Boyd P W, Mackie D S, Hunter K A. Aerosol iron deposition to the surface ocean-modes of iron supply and biological responses[J]. Marine Chemistry, 2010,120(1-4):128-143.
[18]
Baker A R, Jickells T D. Mineral particle size as a control on aerosol iron solubility[J]. Geophysical Research Letters, 2006,33(17):http://dx.doi.org/10.1029/2006gl026557.
[19]
Kim D, Xiao Y, Karchere-Sun R, et al. Atmospheric processing of anthropogenic combustion particles:Effects of acid media and solar flux on the iron mobility from fly ash[J]. ACS Earth and Space Chemistry, 2020,4(5):750-761.
[20]
Schroth A W, Crusius J, Sholkovitz E R, et al. Iron solubility driven by speciation in dust sources to the ocean[J]. Nature Geoscience, 2009, 2(5):337-340.
[21]
Shi Z B, Krom M D, Bonneville S, et al. Atmospheric processing outside clouds increases soluble iron in mineral dust[J]. Environmental Science & Technology, 2015,49(3):1472-1477.
[22]
Sholkovitz E R, Sedwick P N, Church T M, et al. Fractional solubility of aerosol iron:Synthesis of a global-scale data set[J]. Geochimica Et Cosmochimica Acta, 2012,89:173-189.
[23]
Ito A, Myriokefalitakis S, Kanakidou M, et al. Pyrogenic iron:The missing link to high iron solubility in aerosols[J]. Science Advances, 2019,5(5):http://dx.doi.org/10.1126/sciadv.aau7671.
[24]
Bhattachan A, Reche I, D'odorico P. Soluble ferrous iron (Fe(Ⅱ)) enrichment in airborne dust[J]. Journal of Geophysical Research-Atmospheres, 2016,121(17):10153-10160.
[25]
Journet E, Desboeufs K V, Caquineau S, et al. Mineralogy as a critical factor of dust iron solubility[J]. Geophysical Research Letters, 2008,35(7):http://dx.doi.org/10.1029/2007gl031589.
[26]
王珍珍.典型矿物颗粒中铁形态的表征与酸性环境下的铁溶解机制研究[D]. 上海:复旦大学, 2018. Wang Z Z, the Fe speciation in the typical mineral particles and the mechanism of Fe solubility under acidic environment[D]. Shanghai:Fudan University. 2018.
[27]
Wang Z, Li R, Cui L, et al. Characterization and acid-mobilization study for typical iron-bearing clay mineral[J]. J Environ Sci (China), 2018,71:222-232.
[28]
Tao. Y, Murphy. J G. The mechanisms responsible for the interactions among oxalate, pH, and Fe dissolution in PM2.5[J]. ACS Earth and Space Chemistry, 2019,3:2259-2265.
[29]
Desboeufs K V, Losno R, Vimeux F, et al. The pH-dependent dissolution of wind-transported saharan dust[J]. Journal of Geophysical Research-Atmospheres, 1999,104(D17):21287-21299.
[30]
Mackie D S, Boyd P W, Hunter K A, et al. Simulating the cloud processing of iron in australian dust:pH and dust concentration[J]. Geophysical Research Letters, 2005,32(6):http://dx.doi.org/10.1029/2004gl022122.
[31]
Xu N, Gao Y. Characterization of hematite dissolution affected by oxalate coating, kinetics and pH[J]. Applied Geochemistry, 2008, 23(4):783-793.
[32]
Shi Z, Bonneville S, Krom M D, et al. Iron dissolution kinetics of mineral dust at low pH during simulated atmospheric processing[J]. Atmospheric Chemistry and Physics, 2011,11(3):995-1007.
[33]
Ito A, Shi Z. Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean[J]. Atmospheric Chemistry and Physics, 2016,16(1):85-99.
[34]
罗云汉,吴枫,曹军骥,等.不同提取液中源区沙尘溶解性铁价态组成特征[J]. 地球环境学报, 2016,7(2):100-107. Luo Y H, W F, Cao J J. et al. pH-dependent dissolved iron speciation of dust collected in dust source region[J]. Journal of earth environment, 2016,7(2):100-107.
[35]
Cornell R M, Schwertmann U. The iron oxides:Structure, properties, reactions, occurences and uses, Second Edition[M]. Wiley-VCH Verlag GmbH & Co. KGaA, 2004:298-323.
[36]
Ingall E D, Feng Y, Longo A F, et al. Enhanced iron solubility at low pH in global aerosols[J]. Atmosphere, 2018,9(5):http://dx.doi.org/10.3390/atmos9050201.
[37]
Wang Z, Fu H, Zhang L, et al. Ligand-promoted photoreductive dissolution of goethite by atmospheric low-molecular dicarboxylates[J]. J Phys Chem A[J]. 2017,121(8):1647-1656.
[38]
Borer P, Sulzberger B, Hug S J, et al. Photoreductive dissolution of iron(Ⅲ) (hydr)oxides in the absence and presence of organic ligands:Experimental studies and kinetic modeling[J]. Environmental Science & Technology, 2009,43(6):1864-1870.
[39]
Hettiarachchi E, Rubasinghege G. Mechanistic study on iron solubility in atmospheric mineral dust aerosol:Roles of titanium, dissolved oxygen, and solar flux in solutions containing different acid anions[J]. ACS Earth and Space Chemistry, 2020,4(1):101-111.
[40]
朱维晃,臧辉,吴丰昌.微生物还原针铁矿胶体的动力学特征及其影响因素[J]. 中国环境科学, 2011,31(5):820-827. Zhu W H, Zang H, Wu F C. The kinetic characteristics of the microbial reduction of goethite[J]. China environmental science, 2011,31(5):820-827.
[41]
Zhu X R, Prospero J M, Millero F J, et al. The solubility of ferric iron in marine mineral aerosol solutions at ambient relative humidity[J]. Marine Chemistry, 1992,38(1/2):91-107.
[42]
Li W J, Xu L, Liu X H, et al. Air pollution-aerosol interactions produce more bioavailable iron for ocean ecosystems[J]. Science Advances, 2017,3(3):http://dx.doi.org/10.1126/sciadv.1601749.
[43]
王峰威,李红,柴发合,等.大气气溶胶酸度的研究进展[J]. 环境污染与防治, 2010,32(1):67-72. Wang W F, Li H, Chai F H. et al. Progress in research on atmospheric aerosol acidity[J]. Environmental Pollution & Control, 2010,32(1):67-72.
[44]
Spokes L J, Jickells T D, Lim B. Solubilization of aerosol trace-metals by cloud processing:a laboratory study[J]. Geochimica et Cosmochimica Acta, 1994,58(15):3281-3287.
[45]
Cwiertny D M, Baltrusaitis J, Hunter G J, et al. Characterization and acid-mobilization study of iron-containing mineral dust source materials[J]. Journal of Geophysical Research-Atmospheres, 2008, 113(D5):http://dx.doi.org/10.1029/2007jd009332.
[46]
Stumm W, Sulzberger B. The cycling of iron in natural environments-considerations based on laboratory studies of heterogeneous redox processes[J]. Geochimica et Cosmochimica Acta, 1992,56(8):3233-3257.
[47]
Rubasinghege G, Lentz R W, Scherer M M, et al. Simulated atmospheric processing of iron oxyhydroxide minerals at low pH:Roles of particle size and acid anion in iron dissolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(15):6628-6633.
[48]
Salfity. J A, Rrgazzoin. A E, Blesa M A. Interfacial chemistry of dissolving metal oxide particles:Dissolution by organic acids[M]. CRC Press, 2000.
[49]
Zhang G, Lin Q, Peng L, et al. Oxalate formation enhanced by Fe-containing particles and environmental implications[J]. Environ Sci Technol, 2019,53(3):1269-1277.
[50]
Wei J, Yu H, Wang Y, et al. Complexation of iron and copper in ambient particulate matter and its effect on the oxidative potential measured in a surrogate lung fluid[J]. Environ Sci Technol, 2019, 53(3):1661-1671.
[51]
Kieber R J, Skrabal S A, Smith B J, et al. Organic complexation of Fe(Ⅱ) and its impact on the redox cycling of iron in rain[J]. Environmental Science & Technology, 2005,39(6):1576-1583.
[52]
Wang Z M, Schenkeveld W D C, Kraemer S M, et al. Synergistic effect of reductive and ligand-promoted dissolution of goethite[J]. Environmental Science & Technology, 2015,49(12):7236-7244.
[53]
Suter D, Siffert C, Sulzberger B, et al. Catalytic dissoluion of iron(Ⅲ) (hydro)oxides by oxalic acid in the presence of Fe(Ⅱ)[J]. Naturwissenschaften, 1988,75(11):571-573.
[54]
Chen H, Grassian V H. Iron dissolution of dust source materials during simulated acidic processing:The effect of sulfuric, acetic, and oxalic acids[J]. Environ Sci Technol, 2013,47(18):10312-10321.
[55]
Paris R, Desboeufs K V. Effect of atmospheric organic complexation on iron-bearing dust solubility[J]. Atmospheric Chemistry and Physics, 2013,13(9):4895-4905.
[56]
Wiederhold J G, Kraemer S M, Teutsch N, et al. Iron isotope fractionation during proton-promoted, ligand-controlled, and reductive dissolution of goethite[J]. Environmental Science & Technology, 2006,40(12):3787-3793.
[57]
王兆慧,宋文静,马万红,等.铁配合物的环境光化学及其参与的环境化学过程[J]. 化学进展, 2012,24(2):423-432. Wang Z H, Song W J, Ma W H, et al. Environmental photochemistry of iron complexes and their involvement in environmental chemical processes[J]. Progress in chemistry, 2012,24(2):423-432.
[58]
Fu H B, Cwiertny D M, Carmichael G R, et al. Photoreductive dissolution of Fe-containing mineral dust particles in acidic media[J]. Journal of Geophysical Research-Atmospheres[J]. 2010,115http://dx.doi.org/10.1029/2009jd012702.
[59]
Zuo Y G. Kinetics of photochemical chemical cycling of iron coupled with organic-substances in-cloud and for droplets[J]. Geochimica et Cosmochimica Acta. 1995,59(15):3123-3130.
[60]
Kessler N, Kraemer S M, Shaked Y, et al. Investigation of siderophore-promoted and reductive dissolution of dust in marine microenvironments such as trichodesmium colonies[J]. Frontiers in Marine Science, 2020,7:http://dx.doi.org/10.3389/fmars.2020.00045.
[61]
Fan S M. Photochemical and biochemical controls on reactive oxygen and iron speciation in the pelagic surface ocean[J]. Marine Chemistry, 2008,109(1/2):152-164.
[62]
Aguilar-Islas A M, Wu J F, Rember R, et al. Dissolution of aerosol-derived iron in seawater:Leach solution chemistry, aerosol type, and colloidal iron fraction[J]. Marine Chemistry, 2010,120(1-4):25-33.
[63]
Lafon S, Rajot J L, Alfaro S C, et al. Quantification of iron oxides in desert aerosol[J]. Atmospheric Environment, 2004,38(8):1211-1218.
[64]
Li R, Jia X H, Wang F, et al. Heterogeneous reaction of no2 with hematite, goethite and magnetite:Implications for nitrate formation and iron solubility enhancement[J]. Chemosphere, 2020,242:http://dx.doi.org/10.1016/j.chemosphere.2019.125273.
[65]
Tao Y, Murphy J G. The mechanisms responsible for the interactions among oxalate, pH, and Fe dissolution in PM2.5[J]. ACS Earth and Space Chemistry, 2019,3:2259-2265.
[66]
Cwiertny D M, Young M A, Grassian V H. Chemistry and photochemistry of mineral dust aerosol[J]. Annual Review of Physical Chemistry, 2008,59:27-51.
[67]
Johnson M S, Meskhidze N. Atmospheric dissolved iron deposition to the global oceans:Effects of oxalate-promoted Fe dissolution, photochemical redox cycling, and dust mineralogy[J]. Geoscientific Model Development, 2013,6(4):1137-1155.
[68]
Paris R, Desboeufs. K V, Journet. E. Variability of dust iron solubility in atmospheric waters_investigation of the role of oxalate organic complexation[J]. Atmospheric Environment, 2011, http://dx.doi.org/10.1016/j.atmosenv.2011.08.068.
[69]
Raiswell R, Vu H P, Brinza L, et al. The determination of labile Fe in ferrihydrite by ascorbic acid extraction:Methodology, dissolution kinetics and loss of solubility with age and de-watering[J]. Chemical Geology, 2010,278(1/2):70-79.
[70]
Shi Z, Krom M D, Bonneville S, et al. Influence of chemical weathering and aging of iron oxides on the potential iron solubility of saharan dust during simulated atmospheric processing[J]. Global Biogeochemical Cycles, 2011,25(2):http://dx.doi.org/10.1029/2010gb003837.
[71]
Maldonado M T, Strzepek R F, Sander S, et al. Acquisition of iron bound to strong organic complexes, with different Fe binding groups and photochemical reactivities, by plankton communities in Fe-limited subantarctic waters[J]. Global Biogeochemical Cycles, 2005,19(4):15.
[72]
Luo C, Mahowald N, Bond T, et al. Combustion iron distribution and deposition[J]. Global Biogeochemical Cycles, 2008,22(1):http://dx.doi.org/10.1029/2007gb002964.
[73]
Borgatta J, Paskavitz A, Kim D, et al. Comparative evaluation of iron leach from different sources of fly ash under atmospherically relevant conditions[J]. Environmental Chemistry, 2016,13(5):902-912.