Abstract:Condensable particulate matter (CPM) is recognized as a precursor to PM2.5. Extensive industrial research in China reveals substantial CPM emissions from coal and gas-fired boilers, cooling towers, and other sources, all potentially contributing to haze formation. Despite its notable impact, CPM is seldom considered in cause analyses of PM2.5 emissions. An analysis of Beijing's air quality monitoring data reveals a significant increase in the PM2.5/PM10 ratio during periods when PM2.5 levels exceed standard limits, indicating a clear and growing trend of secondary pollution. In contrast, the emissions and ambient concentrations of traditional primary precursors, such as SO2 and NO2, are decreasing, displaying no significant correlation with PM2.5/PM10 ratios or PM2.5 accumulation rates. Our estimates suggest that the contribution to PM2.5 in ambient air in Beijing from CPM emissions from gas heating sources is at least equivalent to that from NOx. Additionally, static and high-humidity conditions, conducive to PM2.5 pollution, likely intensify CPM agglomeration and conversion. This study suggests a substantial, previously underestimated, impact of CPM on Beijing's PM2.5 secondary pollution and underscores the need for regulatory oversight on CPM emissions. We recommend the implementation and promotion of advanced technologies for the concurrent benefits of water vapor and waste heat recycling, alongside efficient haze reduction.
李虹霖, 宋国君, 姜艺婧, 姜晓群, 李辰, 时钰. 可凝结颗粒物排放对北京市PM2.5污染的影响估计[J]. 中国环境科学, 2023, 43(12): 6301-6312.
LI Hong-lin, SONG Guo-jun, JIANG Yi-jing, JIANG Xiao-qun, LI Chen, SHI Yu. Assessing the impact of condensable particulate matter emissions on PM2.5 pollution in Beijing. CHINA ENVIRONMENTAL SCIENCECE, 2023, 43(12): 6301-6312.
[1] 谢元博,陈娟,李巍.雾霾重污染期间北京居民对高浓度PM2.5持续暴露的健康风险及其损害价值评估[J]. 环境科学, 2014,35(1): 1-8. Xie Y B, Chen J, Li W. An assessment of PM2.5 related health eisks and impaired values of Beijing residents in a consecutive high-level exposure during heavy haze days[J]. Environmental Science, 2014, 35(1):1-8. [2] 施小明.大气PM2.5及其成分对人群急性健康影响的流行病学研究进展[J]. 山东大学学报(医学版), 2018,56(11):1-11. Shi X M. Research advances on the epidemiological study on acute health effects of ambient fine particulate matter and related components[J]. Journal of Shandong University (Health Sciences), 2018,56(11):1-11. [3] 陈晨,仲宇,刘园园,等.2013~2018年北京市大气PM2.5持续高暴露对居民因病入院的急性影响[J]. 环境科学研究, 2021,34(1): 213-219. Chen C, Zhong Y, Liu Y Y. Impact of persistent high ambient fine particulate matters exposures on hospitalization in Beijing from 2013 to 2018[J]. Research of Environmental Sciences, 2021,34(1):213-219. [4] 马楠,赵春生,陈静,等.基于实测PM2.5、能见度和相对湿度分辨雾霾的新方法[J]. 中国科学:地球科学, 2015,45(2):227-235. Ma N, Zhao C S, Chen J, et al. A novel method for distinguishing fog and haze based on PM2.5, visibility, and relative humidity. Science China: Earth Sciences[J]. 2015,45(2):227-235. [5] 王桂芝,顾赛菊,陈纪波.基于投入产出模型的北京市雾霾间接经济损失评估[J]. 环境工程, 2016,34(1):121-125. Wang G Z, Gu S J, Chen J B. Assessment of the indirect economic loss caused by heavy haze in Beijing based on input-output model[J]. Environmental Engineering, 2016,34(1):121-125. [6] 李春华,赵隽宇.北京市雾霾灾害农业损失引起的部门间接经济损失评估[J]. 中国农学通报, 2017,33(10):118-124. Li C H, Zhao J Y. Indirect economic loss estimation of inter-industrial sectors: Triggered from agricultural economic loss induced from haze in Beijing[J]. Chinese Agricultural Science Bulletin, 2017,33(10): 118-124. [7] Wang J Q, Gao J, Che F, et al. Decade-long trends in chemical component properties of PM2.5 in Beijing, China (2011~2020)[J]. The Science of the total environment, 2022,832. [8] 高韩钰,魏静,王跃思.北京南郊区PM2.5中水溶性无机盐季节变化及来源分析[J]. 环境科学, 2018,39(5):1987-1993. Gao H Y, Wei J, Wang Y S. Seasonal variation and source analysis of water-soluble inorganic salts in PM2.5 in the southern suburbs of Beijing[J]. Environmental Science, 2018,39(5):1987-1993. [9] 李星,赵文吉,熊秋林,等.北京采暖季PM2.5水溶性无机离子污染特征及其影响因素[J]. 生态环境学报, 2018,27(1):93-100. Li X, Zhao W J, Xiong Q L, et al. The pollution characteristics and influencing factors of PM2.5 inorganic water-soluble ions in Beijing during heating season[J]. Ecology and Environmental Sciences, 2018, 27(1):93-100. [10] 逄妮妮.京津冀及周边地区采暖季PM2.5理化性质及其污染成因研究[D]. 北京:北京化工大学, 2020. Pang N N. Physicalchemical properties and pollution causes of PM2.5 in Beijing-Tianjin-Hebei and its surrounding areas[D]. Beijing: Beijing University of Chemical Technology, 2020. [11] US EPA. EPA Method 202 Best Practices Handbook (2016)[Z]. [12] 胡月琪,颜旭,孔川,等.超低排放高湿废气总颗粒物监测方法及燃气电厂实际测试[J]. 环境科学, 2020,41(8):3563-3571. Hu Y Q, Yan X, Kong C, et al. Monitoring method of total particulate matter in ultra-low-emission and high-humidity exhaust gas from stationary sources and an actual test in a gas power plant[J]. Environmental Science, 2020,41(8):3563-3571. [13] 李小龙,朱法华,段玖祥,等.固定污染源排放可凝结颗粒物研究进展[J]. 化工进展, 2019,38(11):5091-5102. Li X L, Zhu F H, Duan J X, et al. Anoverview of condensable particulate matter emission from stationary sources[J]. Chemical industry and engineering progress, 2019,38(11):5091-5102. [14] 王鹏程,袁畅,粱胜文,等.超低排放燃煤电厂中湿电除尘器对可凝结颗粒物排放特性的影响[J]. 环境科学, 2021:1-10. Wang P C, Yuan C, Liang S W, et al. Effect of WESP on emission characteristics of condensable Particulate Matter from ultra-low emission coal-fired power plants[J]. Environmental Science, 2021: 1-10. [15] Zhang Z P, Li Y Z, Zhang X Y, et al. Review of hazardous materials in condensable particulate matter[J]. Fuel Processing Technology, 2021,220. [16] 石爱军,胡月琪,白志鹏,等.湿法脱硫烟气中多形态颗粒物的测量方法及组分特征[J]. 中国环境监测, 2017,33(2):101-109. Shi A J, Hu Y Q, Bai Z P. Characterizationof the Inorganic Ionic Composition of Multi-state Particulate Matter in Wet Desulfurized Flue Gas from Stationary Sources by a New Assembled Device[J]. Environmental Monitoring in China, 2017,33(2):101-109. [17] 邓建国,王刚,张莹,等.典型超低排放燃煤电厂可凝结颗粒物特征和成因[J]. 环境科学, 2020,41(4):1589-1593. Deng J G, Wang G, Zhang Y, et al. Characteristics of condensable particulate matter in ultra-low emission coal fired power plants[J]. Environmental Science, 2020,41(4):1589-1593. [18] Wu Y J, Xu Z Y, Liu S Q, et al. Emission characteristics of PM2.5 and components of condensable particulate matter from coal-fired industrial plants[J]. Science of the Total Environment, 2021,796. [19] 彭越.燃煤可过滤和可凝结颗粒物中汞的迁移转化规律研究[D]. 北京:华北电力大学, 2021. Peng Y. Study on the emission behavior of particle-bond mercury in condensable particulate matter and filterable particulate matter from coal combustion[D]. Beijing: North China Electric Power University, 2021. [20] 刘更生,李军状,李小龙,等.北京周边地区典型超低排放燃煤机组颗粒物特征研究[J]. 电力科技与环保, 2022,38(2):128-134. Liu G S, Li J Z, Li X L, et al. Characteristics of particulate from typical ultra low emission coal-fired units around Beijing[J]. Electric Power Technology and Environmental Protection, 2022,38(2):128-134. [21] 林国辉,杨富鑫,李正鸿,等.燃煤机组颗粒物排放特性及其有机成分分析[J]. 洁净煤技术, 2021:1-8. Lin G H, Yang F X, Li Z H, et al. Analysis of emission characteristics of particulate matter and organic pollutants from coal-fired power plant[J]. Clean Coal Technology, 2021:1-8. [22] Wang L L, Wu H, Wang Q W, et al. Emission reduction of condensable particulate matter in ammonia-based desulfurized flue gas by heterogeneous vapor condensation[J]. Chemical Engineering and Processing-Process Intensification, 2021,(prepublish). [23] 唐坚,杨建辉,陈鸥,等.氨逃逸过大成为加重大气雾霾的又一成因[J]. 中国能源, 2020,42(10):39-41. Tang J, Yang J H, Chen O, et al. Ammonia escaping from coal-fired power plants has become a new cause that aggravates atmospheric haze[J]. Energy of China, 2020,42(10):39-41. [24] 高境,赵传峰,刘宇,等.有色烟羽分析及可凝结颗粒物管控技术综述[J]. 环境影响评价, 2019,41(3):6-10. Gao J, Zhao C F, Liu Y, et al. Analysis of colored smoke plumes and introduction of a condensable particulate matter control technology[J]. Environmental Impact Assessment, 2019,41(3):6-10. [25] 张小曳,孙俊英,王亚强,等.我国雾-霾成因及其治理的思考[J]. 科学通报, 2013,58(13):1178-1187. Zhang X Y, Sun J Y, Wang Y Q, et al. Factors contributing to haze and fog in China[J]. Chinese Science Bulletin, 2013,58(13):1178-1187. [26] Wang L, Li Y Z, Li J W, et al. The state of the art of condensable particulate matter[J]. Fuel, 2022,325. [27] 李佳霖,张美根.北京冬季不同污染情况下PM2.5传输特征模拟研究[J]. 高原气象, 2022,41(3):829-838. Li J L, Zhang M G. Numerical study on transport characteristics of PM2.5 under different pollution conditions in Beijing during wintertime[J]. Plateau Meteorology, 2022,41(3):829-838. [28] 刘旭艳.京津冀PM2.5区域传输模拟研究[D]. 北京:清华大学, 2015. Liu X Y. Modeling Research on the regional transport of PM2.5 over Jing-Jin-Ji region[D]. Beijing: Tsinghua University, 2015. [29] 李杏茹,白羽,陈曦,等.北京冬季重污染过程大气细颗粒物化学组成特征及来源分析[J]. 环境化学, 2018,37(11):2397-2409. Li X R, Bai Y, Chen X, et al. Chemical composition and source apportionment of PM2.5during winter in Beijing[J]. Environmental Chemistry, 2018,37(11):2397-2409. [30] 刘艳菊,杨峥,刘庆阳,等.北京4个功能区春冬季大气重污染期间PM10和PM2.5化学污染特征及影响因素分析[J]. 环境工程技术学报, 2021,11(4):631-646. Liu Y J, Yang Z, Liu Q Y, et al. Chemical pollution characteristics of PM10 and PM2.5 during heavy air pollution in spring and winter in four functional areas of Beijing and their associated influencing factors[J]. Journal of Environmental Engineering Technology, 2021,11(4):631-646. [31] 安欣欣,曹阳,王琴,等.北京城区PM2.5各组分污染特征及来源分析[J]. 环境科学, 2022,43(5):2251-2261. An X X, Cao Y, Wang Q, et al. Chemical characteristic and source appointment of PM2.5 in urban area of Beijing[J]. Environmental Science, 2022,43(5):2251-2261. [32] 索娜卓嘎,谭丽,周芮平,等.采暖期北京大气PM2.5中碳组分的分布特征及来源解析[J]. 中国环境监测, 2018,34(4):54-59. Suo N Z G, Tan L, Zhou R P, et al. Distribution characteristics and sources apportionent of carbonaceous components in PM2.5 during the heating periods in Beijing[J]. Environmental Monitoring in China, 2018,34(4):54-59. [33] 许云凡,王大玮,向伟玲,等.基于PM2.5来源解析的减排方案制定[J]. 中国环境科学, 2021,41(5):2048-2055. Xu Y F, Wang D W, Xiang W L, et al. Emission reduction scheme based on source apportionment analysis[J]. China Environmental Science, 2021,41(5):2048-2055. [34] 李欢,唐贵谦,张军科,等.2017~2018年北京大气PM2.5中水溶性无机离子特征[J]. 环境科学, 2020,41(10):4364-4373. Li H, Tang G Q, Zhang J K, et al. Characteristics of water-soluble inorganic Ions in PM2.5 in Beijing during 2017~2018[J]. Environmental Science, 2020,41(10):4364-4373. [35] 姬艺珍,郭伟,胡正华,等.基于积累速率的汾渭平原秋冬季PM2.5污染特征及影响因素分析[J]. 环境科学学报, 2021,41(9):3673-3682. Ji Y Z, Guo W, Hu Z H, et al. The pollution characteristics and influencing factors of PM2.5 in autumn and winter seasons in Fenwei Plain based on accumulation rate[J]. Acta Scientiae Circumstantiae, 2021,41(9):3673-3682. [36] 胡京南,柴发合,段菁春,等.京津冀及周边地区秋冬季PM2.5爆发式增长成因与应急管控对策[J]. 环境科学研究, 2019,32(10):1704-1712. Hu J N, Chai F H, Duan J C, et al. Explosive growth of PM2.5 during the autumn and winter seasons in the Jing-Jin-Ji and Surrounding Area and its control measures with emergency response[J]. Research of Environmental Sciences, 2019,32(10):1704-1712. [37] 胡杰锋.天然气锅炉烟气余热回收技术及应用研究[J]. 节能, 2018,37(4):58-60. Hu J F. Gas waste heat recovery technology and application research of natural gas boiler[J]. Energy Conservation, 2018,37(4):58-60. [38] 聂勇,朱鹏.燃气锅炉烟气余热利用与凝结水回收探讨[J]. 区域供热, 2015,(3):64-69,77. Nie Y, Zhu P. Discussion on waste heat utilization and condensate recovery from flue gas of gas-fired boilers[J]. District Heating, 2015, (3):64-69,77. [39] 李少岩,刘少平.高效节能板式换热器在燃气锅炉烟气余热回收中的应用[J]. 山东工业技术, 2018,(23):56,38. Li S Y, Liu S P. Application of high efficiency and energy saving plate heat exchanger in waste heat recovery from flue gas of gas-fired boilers[J]. Shandong Industrial Technology, 2018,(23):56,38. [40] 贾佳,韩力慧,程水源,等.京津冀区域PM2.5及二次无机组分污染特征研究[J]. 中国环境科学, 2018,38(3):801-811. Jia J, Han L H, Cheng S Y, et al. Pollution characteristic of PM2.5 and secondary inorganic ions in Beijing-Tianjin-Hebei region[J]. China Environmental Science, 2018,38(3):801-811. [41] 张国峰,刘波,周少磊,等.2016~2018年北京市通州区大气PM2.5中4种水溶性离子污染特征分析[J]. 环境卫生学杂志, 2022,12(4): 278-285,307. Zhang G F, Liu B, Zhou S L,et al. Pollution characteristics of four water-soluble ions in atmospheric PM2.5 in Tongzhou District of Beijing, China, 2016~2018[J]. Journal of Environmental Hygiene, 2022,12(4):278-285,307. [42] 苏跃进.水蒸气和水溶性离子排放对雾霾暴发的影响分析[J]. 科学与管理, 2019,39(2):55-68. Su Y J. Analysis of the influence of water vapor and water-soluble ion emission on haze outbreak[J]. Science and Management, 2019,39(2): 55-68. [43] 马军鹏,孙汉明,褚世洋,等.CRECT冷却塔蒸发水气回收效率提高措施研究[J]. 石油化工安全环保技术, 2017,33(1):53-55,70. Ma J P, Sun H M, Chu S Y, et al. Research on the improvement measures for recovery efficiency of evaporated water from CRECT cooling tower[J]. Petrochemical Safety and Environmental Protection Technology, 2017,33(1):53-55,70. [44] 胡月琪,王铮,郭建辉,等.超低排放典型燃烧源颗粒物及水溶性离子排放水平与特征[J]. 环境科学, 2021,42(5):2159-2168. Hu Y Q, Wang Z, Guo J H, et al. Emission concentration and characteristics of particulate matter and water-soluble ions in exhaust gas of typical combustion sources with ultra-low emission[J]. Environmental Science, 2021,42(5):2159-2168. [45] 邹贞.垃圾焚烧含湿法脱酸系统的脱白工艺比较[J]. 节能与环保, 2022,(4):62-64. Zou Z. Comparison of deacidification processes of wet deacidification system in waste incineration[J]. Energy Conservation & Environmental Protection, 2022,(4):62-64. [46] 毛书帅,陈添,富佳明,等.基于在线观测的北京冬季一次PM2.5重污染过程特征分析[J]. 安全与环境学报, 2018,18(1):369-374. Mao S S, Chen T, Fu J M, et al. Characteristic analysis for the thick winter air pollution accidents in Beijing based on the online observations[J]. Journal of Safety and Environment, 2018,18(1):369-374. [47] Liu Y Y, WANG J, Zhao X Y, et al. Characteristics, secondary formation and regional contributions of PM2.5 pollution in Jinan during Winter[J]. Atmosphere, 2020,11(3). [48] 孙和泰,黄治军,华伟,等.超低排放燃煤电厂可凝结颗粒物排放特性[J]. 洁净煤技术, 2021:1-7. Sun H T, Huang Z J, Hua W, et al. Emission characteristics of condensable particulate matter from an ultra-low emission coal-fired power plant[J]. Clean Coal Technology, 2021:1-7. [49] 陈源,谢绍东,罗彬.成都市大气细颗粒物组成和污染特征分析(2012~2013年)[J]. 环境科学学报, 2016,36(3):1021-1031. Chen Y, Xie S D, Luo B. Composition and pollution characteristics of fine particles in Chengdu from 2012 to 2013[J]. Acta Scientiae Circumstantiae, 2016,36(3):1021-1031. [50] 赵雪艳,谷超,杨焕明,等.新疆奎独乌区域冬季大气重污染过程PM2.5组成特征及来源解析[J]. 环境科学研究, 2017,30(10):1515-1523. Zhao X Y, Gu C, Yang H M, et al. Chemical composition and source apportionment of PM2.5 during a winter air pollution episode in the Kui-Du-Wu Area of Xinjiang Uygur Autonomous Region[J]. Research of Environmental Sciences, 2017,30(10):1515-1523. [51] 杨孝文,周颖,程水源,等.北京冬季一次重污染过程的污染特征及成因分析[J]. 中国环境科学, 2016,36(3):679-686. Yang X W, Zhou Y, Cheng S Y, et al. Characteristics and formation mechanism of a heavy winter air pollution event in Beijing[J]. China Environmental Science, 2016,36(3):679-686. [52] 刘倬诚,牛月圆,吴婧,等.山地型城市冬季大气重污染过程特征及成因分析[J]. 环境科学, 2021,42(3):1306-1314. Liu Z C, Niu Y Y, WU J, et al. Characteristics and cause analysis of heavy air pollution in a mountainous city during winter.[J]. Environmental Science, 2021,42(3):1306-1314.