Based on the assumption of constant temperature and no nutrient salt limitation, a mathematical model coupling sinking algae growth and water environment of Lake Taihu was used to investigate the effect between the vertical turbulent diffusion and background diffused attenuation coefficient(Kbg) on the growth of sinking algae. The simulation results showed that the total biomass growth of the sinking algae could be sustained without vertical turbulent diffusion in the relatively clean water (Kbg was less than 1.1/m); in turbid water (Kbg was between 1.1~3.0/m), the growth required vertical turbulent diffusion to maintain, and the minimum vertical turbulence diffusion increased with the Kbg. The Peclet number between the minimum vertical turbulence diffusion(D), water depth(z) and the algae sinking speed(v) should between 0.38~13.89, otherwise the minimum vertical turbulence would have little effect on the growth than other factors (for example, algae sinking speed or light attenuation). When the Kbg was greater than 3.0/m, the light intensity of the water column was too low to maintain the total biomass growth of algae. This paper helped to clarify the phytoplankton population succession mechanism in aquatic ecosystems under climate change.
周妍, 赵巧华, 刘鹏. 垂向湍流扩散和光耦合对下沉藻增长的影响——基于内陆混浊湖泊(太湖)分析[J]. 中国环境科学, 2019, 39(2): 792-801.
ZHOU Yan, ZHAO Qiaohua, LIU Peng. Effect of vertical turbulent diffusion and light coupling on the growth of sinking algae——Analysis based on inland turbid lakes (Lake Taihu). CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(2): 792-801.
秦伯强,王小冬,汤祥明,等.太湖富营养化与蓝藻水华引起的饮用水危机——原因与对策[J]. 地球科学进展, 2007,22(9):896-906. Qin B, Wang X, Tang X, et al. Drinking water crisis caused by eutrophication and cyanobacterial bloom in Lake Taihu:cause and measurement[J]. Advances in Earth Science, 2007,22(9):896-906.
[2]
Chen M, Fan M, Liu R, et al. The dynamics of temperature and light on the growth of phytoplankton[J]. Journal of Theoretical Biology, 2015,385:8-19.
[3]
Zhang M, Duan H, Shi X, et al. Contributions of meteorology to the phenology of cyanobacterial blooms:implications for future climate change[J]. Water Research, 2012,46(2):442-452.
[4]
Huisman J, Weissing F J. Light-Limited Growth and Competition for Light in Well-Mixed Aquatic Environments:An Elementary Model[J]. Ecology, 1994,75(2):507-520.
[5]
秦伯强,杨桂军,马健荣,等.太湖蓝藻水华"暴发"的动态特征及其机制[J]. 科学通报, 2016,61(7):759-770. Qin B, Yang G, Ma J, et al. Dynamics of variability and mechanism of harmful cyanobacteria bloom in Lake Taihu, China[J]. Chinese Science Bulletin, 2016,61(7):759-770.
[6]
Zhou J, Qin B, Han X, et al. Turbulence increases the risk of microcystin exposure in a eutrophic lake (Lake Taihu) during cyanobacterial bloom periods[J]. Harmful Algae, 2016,55:213-220.
[7]
Huisman J, Van Oostveen P, Weissing F J. Critical depth and critical turbulence:Two different mechanisms for the development of phytoplankton blooms[J]. Limnology & Oceanography, 1999,44(7):1781-1787.
[8]
Cao H, Kong F, Luo L, et al. Effects of Wind and Wind-Induced Waves on Vertical Phytoplankton Distribution and Surface Blooms of Microcystis aeruginosa in Lake Taihu[J]. Journal of Freshwater Ecology, 2006,21(2):231-238.
[9]
张卓,宋志尧,黄昌春,等.水藻暴发的影响因素定量化研究初步[J]. 环境科学, 2013,34(7):2603-2610. Zhang Z, Song Z, Huang C, et al. Elementary Quantitative Study on Factors of Phytoplankton Bloom[J]. Environmental Science, 2013, 34(7):2603-2610.
[10]
俞茜,陈永灿,刘昭伟.静止水体中微囊藻属迁移轨迹的数值模拟[J]. 中国环境科学, 2017,37(5):1915-1921. Yu Q, Chen Y, Liu Z. Modelling vertical migration trajectory of Microcystis in calm water[J]. China Environmental Science, 2017, 37(5):1915-1921.
[11]
吴生才.太湖水华藻类越冬生态机制和浮游植物的研究[D]. 南京:中国科学院南京地理与湖泊研究所, 2004. Wu S. Study on ecological mechanism of bloom alga overwintering and phytoplankton in Lake Taihu[D]. Nanjing:Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 2004.
[12]
Macias D, Santana A R, Romero E R, et al. Turbulence as a driver for vertical plankton distribution in the subsurface upper ocean[J]. Scientia Marina, 2013,77(4):541-549.
[13]
吴挺峰,朱广伟,秦伯强,等.前期风场控制的太湖北部湖湾水动力及对蓝藻水华影响[J]. 湖泊科学, 2012,24(3):409-415. Wu T, Zhu G, Qin B, et al. Prior wind field induced hydrodynamics and its influence on cyanobacterial bloom in northern bays of Lake Taihu, China[J]. Journal of Lake Sciences, 2012,24(3):409-415.
[14]
俞茜,陈永灿,刘昭伟,等.藻类光竞争模型构建及水体紊动对竞争的影响[J]. 中国环境科学, 2018,38(7):2665-2670. Yu Q, Chen Y, Liu Z, et al. Development of competition model of algae for light and the impact of turbulence on algal competition[J]. China Environmental Science, 2018,38(7):2665-2670.
[15]
袁信芳,施华宏,王晓蓉.太湖着生藻类的时空分布特征[J]. 农业环境科学学报, 2006,25(4):1035-1040. Yuan X, Shi H, Wang X. Temporaland spatial distributionsof periphytic algae in Taihu Lake[J]. Journal of Agro-Environment Science, 2006,25(4):1035-1040.
[16]
虞锐鹏,何恩奇,钮伟民,等.2010年度太湖水域藻密度和叶绿素时空分布特征的研究[C]. 2011中国环境科学学会学术年会论文集(第一卷):367-371. Yu R, He E, Niu W, et al. Study on the characteristics of algal density and chlorophyll spatial and temporal distribution in Lake Taihu in 2010[C]. Proceedings of the 2011 annual conference of the Chinese Society of Environmental Sciences (Volume I):367-371.
[17]
邢鹏,孔繁翔,曹焕生,等.太湖浮游细菌与春末浮游藻类群落结构演替的相关分析[J]. 生态学报, 2007,27(5):1696-1702. Xing P, Kong F, Cao H, et al. Relationship between bacterioplankton and phytoplankton community dynamics during late spring and early summer in Lake Taihu[J]. Acta Ecologica Sinica, 2007,27(5):1696-1702.
[18]
郭文景,符志友,汪浩,等.水华过程水质参数与浮游植物定量关系的研究——以太湖梅梁湾为例[J]. 中国环境科学, 2018,38(4):1517-1525. Guo W, Fu Z, Wang H, et al. The quantitative relation of aquatic parameters and phytoplankton biomass in the process of algal blooms-the case of Meiliang Bay in Taihu Lake[J]. China Environmental Science, 2018,38(4):1517-1525.
[19]
赵巧华,孙国栋,王健健,等.水温、光能对春季太湖藻类生长的耦合影响[J]. 湖泊科学, 2018,30(2):385-393. Zhao Q, Sun G, Wang J, et al. Coupling effect of water temperature and light energy on the algal growth in Lake Taihu[J]. Journal of Lake Sciences, 2018,30(2):385-393.
[20]
许秋瑾,秦伯强,陈伟民,等.太湖藻类生长模型研究[J]. 湖泊科学, 2001,13(2):149-157. Xu Q, Qin B, Chen W, et al. Ecological simulation of algae growth in Taihu Lake[J]. Journal of Lake Science, 2001,13(2):149-157.
[21]
Huisman J, Sharples J, Stroom J M, et al. Changes in turbulent mixing shift competition for light between phytoplankton species[J]. Ecology, 2004,85(11):2960-2970.
[22]
李春华,叶春,张咏,等.太湖湖滨带藻密度与水质、风作用的分布特征及相关关系[J]. 环境科学研究, 2013,26(12):1290-1300. Li C, Ye C, Zhang Y, et al. Temporal and spatial distribution of algal density and its relationship with water quality and wind factor in the littoral zone of Lake Taihu[J]. Research of Environmental Sciences, 2013,26(12):1290-1300.
[23]
Liu X, Lu X, Chen Y. The effects of temperature and nutrient ratios on Microcystis blooms in Lake Taihu, China:An 11-year investigation[J]. Harmful Algae, 2011,10(3):337-343.
[24]
Huisman J, Arrayás M, Ebert U, et al. How do sinking phytoplankton species manage to persist?[J]. American Naturalist, 2002,159(3):245-254.
[25]
徐士良. FORTRAN常用算法程序集[M]. 清华大学出版社, 1992:321-331. Xu S. FORTRAN common algorithm assembly[M]. Tsinghua University Press, 1992:321-331.
[26]
周允华,项月琴.光合有效量子通量密度的气候学计算[J]. 气象学报, 1996,4:447-455. Zhou Y, Xiang Y. Climatological estimaton of quantum flux densities[J]. Acta Meteorologica Sinica, 1996,4:447-455.
[27]
张运林,秦伯强,陈伟民,等.太湖梅梁湾沿岸带水体生物学与光学特性[J]. 生态学报, 2005,25(3):454-460. Zhang Y, Qin B, Chen W, et al. Biological and optical properties of Meiliang Bay in Lake Taihu[J]. Acta Ecologica Sinica, 2005,25(3):454-460.
[28]
张运林,秦伯强,陈伟民,等.不同风浪条件下太湖梅梁湾光合有效辐射的衰减[J]. 应用生态学报, 2005,16(6):1133-1137. Zhang Y, Qin B, Chen W, et al. Attenuation of photosynthetically available radiation(PAR)in Meiliang Bay under different winds and waves[J]. Chinese Journal of Applied Ecology, 2005,16(6):1133-1137.
[29]
Visser P M, Ibelings B W, Bormans M, et al. Artificial mixing to control cyanobacterial blooms:a review[J]. Aquatic Ecology, 2016, 50(3):423-441.
[30]
吴攀,邓建明,秦伯强,等.水温和营养盐增加对太湖冬、春季节藻类生长的影响[J]. 环境科学研究, 2013,26(10):1064-1071. Wu P, Deng J, Qin B, et al. Effects of enhanced water temperature and nutrient concentration on algal growth in winter and spring season in Lake Taihu, China[J]. Research of Environmental Sciences, 2013, 26(10):1064-1071.
[31]
谭啸,孔繁翔,于洋,等.升温过程对藻类复苏和群落演替的影响[J]. 中国环境科学, 2009,29(6):578-582. Tan X, Kong F, Yu Y, et al. Effects of enhanced temperature on algae recruitment and phytoplankton community succession[J]. China Environmental Science, 2009,29(6):578-582.
[32]
吴雅丽,许海,杨桂军,等.太湖春季藻类生长的磷营养盐阈值研究[J]. 中国环境科学, 2013,33(9):1622-1629. Wu Y, Xu H, Yang G, et al. Developing the critical phosphorus threshold for spring algal growth in Lake Taihu, China[J]. China Environmental Science, 2013,33(9):1622-1629.
[33]
陈伟民,陈宇炜,秦伯强,等.模拟水动力对湖泊生物群落演替的实验[J]. 湖泊科学, 2000,12(4):343-352. Chen W, Chen Y, Qin B, et al. Experimental Study on the Biological Community Succession Caused by Water Flow[J]. Journal of Lake Science, 2000,12(4):343-352.
[34]
Huisman J, Codd G A, Paerl H W,et al. Cyanobacterial blooms[J]. Nature Reviews Microbiology, 2018,16(8):471-483.
[35]
朱广伟,秦伯强,高光.强弱风浪扰动下太湖的营养盐垂向分布特征[J]. 水科学进展, 2004,15(6):775-780. Zhu G, Qin B, Gao G, et al. Vertical distribution of the concentrations of phosphorus and suspended solid in Taihu lake affected by wind-induced wave[J]. Advances in Water Science, 2004,15(6):775-780.
[36]
Bengfort M, Malchow H. Vertical mixing and hysteresis in the competition of buoyant and non-buoyant plankton prey species in a shallow lake[J]. Ecological Modelling, 2016,323:51-60.
[37]
Portalier S M J, Cherif M, Zhang L,et al. Size-related effects of physical factors on phytoplankton communities[J]. Ecological Modelling, 2016,323:41-50.