Influencing factors and reduction mechanism of carbon emissions at the city-range: An empirical study on Fujian province
SU Kai1, CHEN Yi-hui1, FAN Shui-sheng1, Zhang Ming-ru2
1. Anxi College of Tea Science/College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
2. College of Economics, Yangtze University, Jingzhou 434023, China
In this paper, 9 cities of Fujian province was selected as the research object, and an extended STIRPAT-PLS model was used to empirically analyze the influencing factors of Fujian Province's carbon emissions from 2010 to 2016. The model was able to determine the main influence factors on the increase of carbon emissions and calculate the influence rate of each factor. The results showed that total population, urbanization rate, per-capita GDP, secondary industry ratio and energy intensity have positive driving effects on the increase of carbon emissions, while tertiary industry ratio has negative driving effects on the increase of carbon emissions. The three factors such as population, per-capita GDP and urbanization rate make the greatest contribution to increase of carbon emissions. On this basis, the paper proposed several policy suggestions to reduce carbon emissions, including enhancing the development of renewable and clean energy, promoting the optimization and upgrading of energy and industrial structures, and improving energy efficiency, which can be considered as a valid solution for win-win targets of regional economic development and carbon emissions reduction.
苏凯, 陈毅辉, 范水生, 张明如. 市域能源碳排放影响因素分析及减碳机制研究——以福建省为例[J]. 中国环境科学, 2019, 39(2): 859-867.
SU Kai, CHEN Yi-hui, FAN Shui-sheng, Zhang Ming-ru. Influencing factors and reduction mechanism of carbon emissions at the city-range: An empirical study on Fujian province. CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(2): 859-867.
徐芳,刘云龙.《巴黎协议》终落槌中国发挥巨大推动作用[EB/OL]. http://www.xinhuanet.com.world/2015-12/13/c_128525228. htm2015-12-13/2018-06-08. Xu F, Liu Y L. China plays a huge role in promoting the final fall of the Paris Agreement[EB/OL]. http://www.xinhuanet.com.world/2015-12/13/c_128525228.htm2015-12-13/2018-06-08.
[2]
福建省统计局.福建统计年鉴2017[EB/OL]. http://tjj.fujian.gov.cn/tongjinianjian/dz2017/index-cn.htm2017-09-04/2018-06-08. Fujian Bureau of Statistics. Fujian Statistical Yearbook 2017[EB/OL]. http://tjj.fujian.gov.cn/tongjinianjian/dz2017/index-cn.htm 2017-09-04/2018-06-08.
曾六福.福建省沿海县(市)生态环境现状综合评价[J]. 湖北农业科学, 2017,56(3):435-440. Zeng L F. Comprehensive evaluation on the eco-environment at present of counties and cities in fujian coastal areas[J]. Hubei Agricultural Sciences, 2017,56(3):435-440.
[5]
陈操操,刘春兰,汪浩,等.北京市能源消费碳足迹影响因素分析——基于STIRPAT模型和偏小二乘模型[J]. 中国环境科学, 2014, 34(6):1622-1632. Chen C C, Liu C L, Wang H, et al. Examining the impact factors of energy consumption related carbon footprints using the STIRPAT model and PLS model in Beijing[J]. China Environmental Science, 2014,34(6):1622-1632.
[6]
Zhang W, Shen Y M, Zhou Y Y. Increased CO2 emissions from energy consumption based on three-level nested I-O structural decomposition analysis for Beijing[J]. J. Resources and Ecology, 2014,5(2):115-122.
[7]
王长建,汪菲,张虹鸥.新疆能源消费碳排放过程及其影响因素——基于扩展的Kaya恒等式[J]. 生态学报, 2016,36(8):2151-2163. Wang C J, Wang F, Zhang H O. The process of energy-related carbon emissions and influencing mechanism research in Xinjiang[J]. Acta Ecologica Sinica, 2016,36(8):2151-2163.
[8]
李健,王铮,朴胜任.大型工业城市碳排放影响因素分析及趋势预测——基于PLS-STIRPAT模型的实证研究[J]. 科技管理研究, 2016,7:229-234. Li J, Wang Z, Piao S R. Influence factors analysis and trend forecasting of large industrial cities' carbon emissions:Based on the PLS-STIRPAT model[J]. Science and Technology Management Research, 2016,7:229-234.
[9]
马晓君,董碧滢,于渊博,等.东北三省能源消费碳排放测度及影响因素[J]. 中国环境科学, 2018,38(8):3170-3179. Ma X J, Dong B Y, Yu Y B, et al. Measurement of carbon emissions from energy consumption in three Northeastern provinces and its driving factors[J]. China Environmental Science, 2014,34(6):1622-1632.
[10]
Liu Y S, Yan B, Zhou Y. Urbanization, economic growth, and carbon dioxide emissions in China:A panel cotintegration and causality analysis[J]. Journal of Geographical Sciences, 2016,26(2):131-152.
[11]
Zhao X T, Burnett J W, Fletcher J J. Spatial analysis of China province-level CO2 emission intensity[J]. Renewable and Sustainable Energy Reviews, 2014,33:1-10.
[12]
赵哲,陈建成,白羽萍,等.二氧化碳排放与经济增长关系的实证分析[J]. 中国环境科学, 2018,38(7):2785-2793. Zhao Z, Chen J C, Bai Y P, et al. The empirical analysis of the relationship between carbon dioxide emissions and economic growth[J]. China Environmental Science, 2018,38(7):2785-2793.
[13]
李建豹,黄贤金,吴常艳,等.中国省域碳排放影响因素的空间异质性分析[J]. 经济地理, 2015,35(11):21-28. Li J B, Huang X J, Wu C Y, et al. Analysis of spatial heterogeneity impact factors on carbon emissions in China[J]. Economic Geography, 2015,35(11):21-28.
[14]
卢娜,曲福田,冯淑怡,等.基于STIRPAT模型的能源消费碳足迹变化及影响因素——以江苏省苏锡常地区为例[J]. 自然资源学报, 2011,26(5):814-824. Lu N, Qu F T, Feng S Y, et al. Trends and determining factors of energy consumption carbon footprint:An analysis for Suzhou-Wuxi-Changzhou Region based on STIRPAT model[J]. Journal of Natural Resources, 2011,26(5):814-824.
[15]
刘源,李向阳,林剑艺,等.基于LMDI分解的厦门市碳排放强度影响因素分析[J]. 生态学报, 2014,34(9):2378-2387. Liu Y, Li X Y, Lin J Y, et al. Factor decomposition of carbon intensity in Xiamen city based on LMDI method[J]. Acta Ecologica Sinica, 2014,34(9):2378-2387.
[16]
Wu P, Tian M. On Estimating transportation energy consumption and carbon dioxide emissions from off-shore island tourism:A case study of Haikou city, China[J]. J. Resources and Ecology, 2016,7(6):472-479.
[17]
刘贤赵,高长春,宋炎,等.湖南市域化石能源消费碳排放时空格局及驱动因素[J]. 生态学报, 2017,37(7):2476-2487. Liu X Z, Gao C C, Song Y, et al. Temporal-spatial carbon emission patterns caused by fossil energy consumption at the city level in Hunan Province, China and the factors driving their composition[J]. Acta Ecologica Sinica, 2017,37(7):2476-2487
[18]
张振宇.农业经济发展与农业碳排放的实证关系研究——以上海郊区农业为例[J]. 生态经济, 2017,33(10):29-33. Zhang Z Y. Empirical Analysis of agricultural economics and agricultural emissions:A case study of Shanghai suburb agriculture[J]. Ecological Economy, 2017,33(10):29-33.
[19]
邵帅,杨莉莉,曹建华.工业能源消费碳排放影响因素研究——基于STIRPAT模型的上海分行业动态面板数据实证分析[J]. 财经研究, 2010,11:16-27. Shao S, Yang L L, Cao J H. Study on Influencing factors of CO2 emissions from industrial energy consumption:An empirical analysis based on STIRPAT model and industrial sectors' dynamic panel data in Shanghai[J]. Journal of Finance and Economics, 2010,11:16-27.
[20]
陈志建,王铮.中国地方政府碳减排压力驱动因素的省际差异——基于STIRPAT模型[J]. 资源科学, 2012,34(4):718-724. Chen Z J, Wang Z. The Differences of driving factors of local governments'pressure on carbon emission reduction in China:Based on STIRPAT model[J]. Resources Science, 2012,34(4):718-724.
[21]
丁唯佳,吴先华,孙宁,等.基于STIRPAT模型的我国制造业碳排放影响因素研究[J]. 数理统计与管理, 2012,3:499-506. Ding W J, Wu X H, Sun N, et al. Analyzing impact factors of manufacturing CO2 emissions in China:based on the STIRPAT model[J]. Journal of Applied Statistics and Management, 2012,3:499-506.
[22]
张勇,张乐勤,包婷婷.安徽省城市化进程中的碳排放影响因素研究——基于STIRPAT模型[J]. 长江流域资源与环境, 2014,23(4):512-517. Zhang Y, Zhang L Q, Bao T T. Research on the influential factors of carbon emissions in the process of urbanization in Anhui province:Based on STIRPAT model[J]. Resources and Environment in the Yangtze Basin, 2014,23(4):512-517.
[23]
洪业应,向思洁,陈景信.重庆市人口规模、结构对碳排放影响的实证研究——基于STIRPAT模型的分析[J]. 西北人口, 2015,36(3):13-17. Hong Y Y, Xiang S J, Chen J X. Impact of demographic factors on carbon emission in Chongqing City:A study base on STIRPAT model[J]. Northwest Population Journal, 2015,36(3):13-17.
[24]
Wold S, Ruhe A, Wold H, et al. The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses[J]. SIAM Journal on Scientific and Statistical Computing, 1984,5(3):735-743.
[25]
Dietz T, Rosa E A. Rethinking the environmental impacts of population, affluence and technology[J]. Human Ecology Review, 1994,1:277-300.
[26]
Ehrilich P R, Holdren J P. The impact of population growth[J]. Science, 1971,171:1212-1217.
[27]
York R, Rosa E A, Dietz T. STIRPAT, IPAT and ImPACT:Analytic tools for unpacking the driving forces of environmental impact[J]. Ecological Economics, 2003,46(3):351-365.
[28]
Shi A. The impact of population pressure on global carbon dioxide emissions, 1975-1996:evidence from pooled cross-country data[J]. Ecological Economics, 2003,44(1):29-42.
[29]
Phetkeo P, Shinji K. Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis[J]. Ecological Economics, 2010,70(2):434-444.
[30]
Brantley L. Impact of population, age structure, and urbanization on carbon emissions/energy consumption:evidence from macro-level, cross-country analyses[J]. Populatim & Environment, 2013,35(3):286-304.
[31]
肖明月,方言龙. FDI对中国东部地区碳排放的影响-基于STIRPAT模型的实证分析[J]. 中央财经大学学报, 2013,7:59-64. Xiao M Y, Fang Y L. The Impact of FDI on carbon emissions in the Eastern Region of China:An empirical analysis based on STIRPAT model[J]. Journal of Central University of Finance & Economics, 2013,7:59-64.
[32]
Wang Z, Yin F, Zhang Y, et al. An empirical research on the influencing factors of regional CO2 emissions:Evidence from Beijing city, China[J]. Applied Energy, 2012,100:277-284.
[33]
林伯强,刘希颖.中国城市化阶段的碳排放:影响因素和减排策略[J]. 经济研究, 2010,8:66-78. Lin B Q, Liu X Y. China' s Carbon dioxide emissions under the urbanization process:influence factors and abatement policies[J]. Economic Research Journal, 2010,8:66-78.
[34]
Özgür Yeniay, Atilla Göktas. A comparison of partial least squares regression with other prediction methods[J]. Hacettepe Journal of Mathematics and Statistics, 2002,31:99-111.
[35]
Farahani H, Rahiminezhad A, Same L, et al. A Comparison of partial least squares (PLS) and ordinary least squares (OLS) regressions in predicting of couples mental health based on their communicational patterns[J]. Procedia Social and Behavioral Sciences, 2010,5:1459-1463.
[36]
Eggleston H S, Buendia L, Miwa K, et al. 2006 IPCC guidelines for national greenhouse gas inventories[EB/OL]. https://www.ipcc-nggip. iges.or.jp/public/2006gl/2007-03-01/2018-06-06.
[37]
Poumanyvong P, Kaneko S. Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis[J]. Ecological Economics, 2010,70(2):434-444.