1. Key Laboratory for Land Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resource, Chinese Academy of Sciences, Lanzhou 730000, China;
2. Key Laboratory for Semi-Arid Climate Change, Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China;
3. Meishan Meteorological Service, Meishan 620010, China
To accurately characterize the effect of complex urban building structures on pollutant transport and diffusion processes, a one-way coupled WRF-Fluent model was constructed and applied to simulate the pollutant dispersion from an elevated source in Yuzhong county. The performance of WRF model was validated systematically using data obtained from the Urban Meteorological and Tracer Experiment, and it is found that WRF can provide accurate and time-varying meteorological driving field for Fluent. The spatial and temporal evolution of the flow field and pollution plume in Yuzhong County was simulated explicitly using WRF-Fluent model with embedded three-dimensional geometric model of Yuzhong County and the results were compared to the measured tracer concentration data. The WRF-Fluent model can well reproduce the complex flow patterns and the evolution of the polluted plume. The simulated maximum ground level and urban canopy top concentrations are within a factor of three of the observations. The constructed WRF-Fluent model has good performance for urban dispersion, and is an effective tool for urban planning, urban air quality management and environmental risk assessment.
Britter R E, Hanna S R. Flow and dispersion in urban areas[J]. Annual Review of Fluid Mechanics, 2003,35(1):469-496.
[2]
Miao Y, Liu S, Zheng H, et al. A multi-scale urban atmospheric dispersion model for emergency management[J]. Advances in Atmospheric Sciences, 2014,31(6):1353-1365.
[3]
Kochanski A K, Pardyjak E R, Stoll R, et al. One-way coupling of the WRF-QUIC urban dispersion modeling system[J]. Journal of Applied Meteorology and Climatology, 2015,54(10):2119-2139.
[4]
Hendricks E A, Diehl S R, Burrows D A, et al. Evaluation of a fast-running urban dispersion modeling system using Joint Urban 2003 field data[J]. Journal of Applied Meteorology and Climatology, 2007,46(12):2165-2179.
[5]
向伟玲,安俊岭,王喜全,等.大气应急响应模拟中城市冠层风廓线参数化方法检验[J]. 气候与环境研究, 2013,18(2):187-194.Xiang W L, An J L, Wang X Q, et al. Testing of urban canopy wind profile parameterization for atmospheric emergency response modeling system[J]. Climatic and Environmental Research, 2013, 18(2):187-194.
[6]
An J, Xiang W, Han Z, et al. Validation of the Institute of Atmospheric Physics emergency response model with the meteorological towers measurements and SF6diffusion and pool fire experiments[J]. Atmospheric environment, 2013,81:60-67.
[7]
Calhoun R, Gouveia F, Shinn J, et al. Flow around a complex building:Comparisons between experiments and a Reynolds-averaged Navier-Stokes approach[J]. Journal of Applied Meteorology, 2004,43(5):696-710.
[8]
Ai Z T, Mak C M. CFD simulation of flow and dispersion around an isolated building:Effect of inhomogeneous ABL and near-wall treatment[J]. Atmospheric Environment, 2013,77:568-578.
[9]
王乐,张云伟,顾兆林.动态风场及交通流量下街道峡谷内污染物扩散模拟[J]. 中国环境科学, 2012,32(12):2161-2167.Wang L, Zhang Y W, Gu Z L. The numerical simulation of pollutant dispersion in street canyons under dynamic wind field and traffic flux conditions[J]. China Environmental Science, 2012,32(12):2161-2167.
[10]
杨方,钟珂,亢燕铭.街道峡谷对称性对污染物扩散的影响[J]. 中国环境科学, 2015,35(3):706-713.Yang F, Zhong K, Kang Y M. Effects of street geometric configurations on the pollutant dispersion around the canyons[J]. China Environmental Science, 2015,35(3):706-713.
[11]
窦鸿文,明廷臻,许杰,等.城市立体交通系统中污染物传播特性数值模拟[J]. 中国环境科学, 2018,38(1):51-58.Dou H W, Ming T Z, Xu J, et al. Numerical simulation of pollutant propagation characteristics in a three-dimensional urban traffic system[J]. China Environmental Science, 2018,38(1):51-58.
[12]
胡伟,钟秦.壁面加热作用对街道峡谷污染物扩散的影响[J]. 中国环境科学, 2009,29(9):908-913.Hu W, Zhong Q. Impact of wall heating effects on pollutant dispersion in urban street canyon[J]. China Environmental Science, 2009,29(9):908-913.
[13]
Zajic D, Fernando H J S, Calhoun R, et al. Flow and turbulence in an urban canyon[J]. Journal of Applied Meteorology and Climatology, 2011,50(1):203-223.
[14]
Baik J J, Kim J J. A numerical study of flow and pollutant dispersion characteristics in urban street canyons[J]. Journal of applied meteorology, 1999,38(11):1576-1589.
[15]
顾兆林,张云伟.城市街谷的空气流动与污染物扩散研究——物理模型的发展及数学模拟[J]. 地球环境学报, 2011,2(2):362-373.Gu Z L, Zhang Y W. A review of studies on air flow and pollutant dispersion in urban street canyons-development of physical model and mathematical simulations[J]. Journal of Earth Environment, 2011, 2(2):362-373.
[16]
Warner S, Platt N, Heagy J F, et al. Comparisons of transport and dispersion model predictions of the Mock Urban Setting Test field experiment[J]. Journal of Applied Meteorology and Climatology, 2006,45(10):1414-1428.
[17]
Chen B, Liu S, Miao Y, et al. Construction and validation of an urban area flow and dispersion model on building scales[J]. Acta Meteorologica Sinica, 2013,27(6):923-941.
[18]
董文成,左洪超,邵毅,等.Fluent在城区内流场及污染扩散模拟的适用性检验[J]. 环境科学与技术, 2014,37(2):61-68.Dong W C, Zuo H C, Shao Y, et al. Applicability test of fluent in numerical simulation for the flow field and pollutant diffusion in urban areas[J]. Environmental Science & Technology, 2014,37(2):61-68.
[19]
邵毅,张述文,左洪超,等.榆中县城大气污染物扩散的观测实验与数值模拟[J]. 中国环境科学, 2013,33(7):1222-1230.Shao Y, Zhang S W, Zuo H C, et al. Observational experiment and numerical simulation of air pollutant dispersion in Yuzhong[J]. China Environmental Science, 2013,33(7):1222-1230.
[20]
Flaherty J E, Stock D, Lamb B. Computational fluid dynamic simulations of plume dispersion in urban Oklahoma City[J]. Journal of Applied Meteorology and Climatology, 2007,46(12):2110-2126.
[21]
Lundquist J K and Chan S T. Consequences of urban stability conditions for Computational Fluid Dynamics simulations of urban dispersion[J]. Journal of Applied Meteorology and Climatology, 2007,46:1080-1097.
[22]
Hanna S R, Brown M J, Camelli F E, et al. Detailed simulations of atmospheric flow and dispersion in downtown Manhattan:An application of five computational fluid dynamics models[J]. Bulletin of the American Meteorological Society, 2006,87(12):1713-1726.
[23]
Nelson M A, Brown M J, Halverson S A, et al. A case study of the weather research and forecasting model applied to the joint urban 2003 tracer field experiment. part 1:Wind and turbulence[J]. Boundary-Layer Meteorology, 2016a,158(2):285-309.
[24]
Li L, Hu F, Jiang J, et al. An application of the RAMS/FLUENT system on the multi-scale numerical simulation of the urban surface layer-A preliminary study[J]. Advances in Atmospheric Sciences, 2007,24(2):271-280.
[25]
Baik J J, Park S B, Kim J J. Urban flow and dispersion simulation using a CFD model coupled to a mesoscale model[J]. Journal of Applied Meteorology and Climatology, 2009,48(8):1667-1681.
[26]
Tewari M, Kusaka H, Chen F, et al. Impact of coupling a microscale computational fluid dynamics model with a mesoscale model on urban scale contaminant transport and dispersion[J]. Atmospheric Research, 2010,96(4):656-664.
[27]
Wyszogrodzki A A, Miao S, Chen F. Evaluation of the coupling between mesoscale-WRF and LES-EULAG models for simulating fine-scale urban dispersion[J]. Atmospheric Research, 2012,118:324-345.
[28]
Miao Y, Liu S, Chen B, et al. Simulating urban flow and dispersion in Beijing by coupling a CFD model with the WRF model[J]. Advances in Atmospheric Sciences, 2013,30(6):1663.
[29]
Nelson M A, Brown M J, Halverson S A, et al. A case study of the Weather Research and Forecasting model applied to the Joint Urban 2003 tracer field experiment. Part 2:Gas tracer dispersion[J]. Boundary-Layer Meteorology, 2016b,161(3):461-490.
[30]
李磊,张立杰,陈柏纬.基于CFD技术的陡峭山体风场模拟方法研究[J]. 气象学报, 2016,74(4):613-622.Li L, Zhang L J, Chan P W. The application of CFD techniques on the wind field simulation over steep mountains:A method study[J]. Acta Meteorologica Sinica, 2016,74(4):613-622.
[31]
董龙翔,左洪超,杨宾,等.边界入流风场扰动对模拟城市大气扩散的影响[J]. 中国环境科学, 2017,37(9):3210-3219.Dong L X, Zuo H C, Yang B, et al. Influence of boundary inflow wind fluctuation on simulated urban atmospheric diffusion[J]. China Environmental Science, 2017,37(9):3210-3219.
[32]
朱强,亢燕铭,杨方,等.上游建筑对街道峡谷内流场和污染物分布特征的影响[J]. 中国环境科学, 2015,35(1):45-54.Zhu Q, Kang Y M, Yang F, et al. Impacts of upstream buildings on the flow fields and pollutant distributions in street canyons[J]. China Environmental Science, 2015,35(1):45-54.
[33]
董龙翔,左洪超,董文成.兰州市榆中县城区重气示踪试验的初步分析[J]. 兰州大学学报(自然科学版), 2013,49(5):644-650.Dong L X, Zuo H C, Dong W C. Preliminary analysis of heavy gas tracer transport and diffusion within an urban area in Yuzhong County, Lanzhou[J]. Journal of Lanzhou University (Natural Sciences), 2013, 49(5):644-650.
[34]
Mlawer E J, Taubman S J, Brown P D, et al. Radiative transfer for inhomogeneous atmospheres:RRTM, a validated correlated-k model for the longwave[J]. Journal of Geophysical Research:Atmospheres, 1997,102(D14):16663-16682.
[35]
Hong S Y, Dudhia J, Chen S H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J]. Monthly Weather Review, 2004,132(1):103-120.
[36]
Janjic Z I. Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model[J]. NCEP Office Note, 2002,437:61.
[37]
Chen F, Dudhia J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I:Model implementation and sensitivity[J]. Monthly Weather Review, 2001,129(4):569-585.
[38]
Kain J S. The Kain-Fritsch convective parameterization:an update[J]. Journal of Applied Meteorology, 2004,43(1):170-181.
[39]
Tominaga Y, Stathopoulos T. CFD simulation of near-field pollutant dispersion in the urban environment:A review of current modeling techniques[J]. Atmospheric Environment, 2013,79:716-730.