Effect of dissolved oxygen on bioflocculation of organic matter in high loaded bioflocculation membrane reactor
WAN Li-guo1,2, LIN Qiao1, ZHANG Li-jun1, ZHANG Wen-hua1,2, LIU Hong-bo1,2, LONG Bei-sheng1,2, XIONG Ling1
1. School of Water Conservancy & amp;Environment Engineering, Changchun Institute of Technology, Changchun 130012, China; 2. Jilin Provincial Key Laboratory of Municipal Wastewater Treatment, Changchun Institute of Technology, Changchun 130012, China
Abstract:In order to study the effect of dissolved oxygen (DO) on bioflocculation law of organic matter in high loaded bioflocculation membrane reactor (HLB-MR), parallel contrast experiments were conducted to investigate the bioflocculation effect of organic matter, the content of extracellular polymeric substance (EPS), the concentration of metal cations and the microbial community structure under different DO conditions. When the DO concentrations were at 1~2mg/L and 6~8mg/L, the flocculation efficiencies of HLB-MRs were 83% and 89%, respectively. The difference in turbidity of the supernatant in the HLB-MRs further confirmed that the higher DO concentration had induced a better bioflocculation effect. When the DO concentration was at 6~8mg/L, the content of bound EPS and supernatant EPS in the HLB-MR were 15.64mg/(g·VSS) and 8.71mg/L, respectively, both of which were significantly higher than 11.83mg/(g·VSS) and 6.56mg/L at 1~2mg/L of DO concentration, and the concentrations of magnesium and aluminum in the concentrate in the HLB-MR were also significantly higher than those at 1~2mg/L of DO concentration. Under high DO concentration conditions, more EPS are combined with metal cations to be immobilized in the sludge matrix, which promotes bioflocculation. High-throughput sequencing showed that when the DO concentrations were at 1~2mg/L and 6~8mg/L, the community structure of bacteria in the HLB-MRs were significantly different. The relative abundance of Actinobacteria and Saccharibacteria in the sediment of HLB-MR at higher DO concentration were higher, which might promote bioflocculation.
万立国, 林巧, 张丽君, 张文华, 刘红波, 龙北生, 熊玲. 溶解氧对HLB-MR反应器内有机物的生物絮凝影响[J]. 中国环境科学, 2019, 39(8): 3340-3346.
WAN Li-guo, LIN Qiao, ZHANG Li-jun, ZHANG Wen-hua, LIU Hong-bo, LONG Bei-sheng, XIONG Ling. Effect of dissolved oxygen on bioflocculation of organic matter in high loaded bioflocculation membrane reactor. CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(8): 3340-3346.
Mccarty P L, Bae J, Kim J. Domestic wastewater treatment as a net energy producer——can this be achieved?[J]. Environmental Science and Technology, 2011,45(17):7100-7106.
[2]
万立国,林巧,张文华,等.HLB-MR反应器直接处理城市污水及回收有机物[J]. 中国环境科学, 2019,39(4):1596-1601. WAN Li-guo, LIN Qiao, ZHANG Wen-hua, et al. Direct treatment and organics recovery of municipal wastewater via high loaded bioflocculation membrane reactor[J]. China Environmental Science, 2019,39(4):1596-1601.
[3]
Guven H, Dereli R K, Ozgun H, et al. Towards sustainable and energy efficient municipal wastewater treatment by up-concentration of organics[J]. Progress in Energy and Combustion Science, 2019,70:145-168.
[4]
Yamamura H, Okimoto K, Kimura K, et al. Hydrophilic fraction of natural organic matter causing irreversible fouling of microfiltration and ultrafiltration membranes[J]. Water Research, 2014,54:123-136.
[5]
Huang H, Lee N, Young T, et al. Natural organic matter fouling of low-pressure, hollow-fiber membranes:Effects of NOM source and hydrodynamic conditions[J]. Water Research, 2007,41(17):3823-3832.
[6]
国家环境保护总局.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社, 2002:200-284. State environmental protection administration of china. Monitoring and analytic methods of water and wastewater[M]. 4th ed. Beijing:Environmental Science Press of China, 2002:200-284.
[7]
Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the Folin phenol reagent.[J]. Journal of Biological Chemistry, 1951,193(1):265-275.
[8]
Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric Method for Determination of Sugars and Related Substances[J]. Analytical Chemistry, 1956,28(3):350-356.
[9]
Dennis K L, Wang Y, Blatner N R, et al. Adenomatous polyps are driven by microbe-instigated focal inflammation and are controlled by IL-10-producing T cells.[J]. Cancer Research, 2013,73(19):5905-5913.
[10]
BrittMarie Wilén. The effect of dissolved oxygen concentration on the structure, size and size distribution of activated sludge[J]. Water Research, 1999,33(2):391-400.
[11]
Zhang Y, Allen D G. Strategies for minimizing deflocculation of biosolids due to oxygen disturbances[J]. Water Science and Technology, 2007,55(6):173-180.
[12]
Suresh A, Grygolowiczpawlak E, Pathak S, et al. Understanding and optimization of the flocculation process in biological wastewater treatment processes:Areview[J]. Chemosphere, 2018,210:401-416.
[13]
Faust L, Temmink H, Zwijnenburg A, et al. Effect of dissolved oxygen concentration on the bioflocculation process in high loaded MBRs[J]. Water Research, 2014,66:199-207.
[14]
Rasmussen H, Bruus J H, Keiding K, et al. Observations on dewaterability and physical, chemical and microbiological changes in anaerobically stored activated sludge from a nutrient removal plant[J]. Water Research, 1994,28(2):417-425.
[15]
Starkey J E, Karr P R. Effect of Low Dissolved Oxygen Concentration on Effluent Turbidity[J]. Journal-Water Pollution Control Federation, 1984,56(7):837-843.
[16]
Wilén B M, Nielsen J L, Keiding K, et al. Influence of microbial activity on the stability of activated sludge flocs[J]. Colloids & Surfaces B Biointerfaces, 2000,18(2):145-156.
[17]
Caccavo F, Frolund B, Van Ommen K F, et al. Deflocculation of Activated Sludge by the Dissimilatory Fe(Ⅲ)-Reducing Bacterium Shewanella alga BrY.[J]. Applied & Environmental Microbiology, 1996,62(4):1487-1490.
[18]
Rasmussen H, Nielsen P H. Iron reduction in activated sludge measured with different extraction techniques[J]. Water Research, 1996,30(3):551-558.
[19]
Wilén B M, Balmér P. The effect of dissolved oxygen concentration on the structure, size and size distribution of activated sludge flocs[J]. Water Research, 1999,33(2):391-400.
[20]
Salehizadeh H, Shojaosadati S A. Extracellular biopolymeric flocculants. Recent trends and biotechnological importance[J]. Biotechnology Advances, 2001,19(5):371-385.
[21]
Fang H H P, Jia X S. Extraction of extracellular polymer from anaerobic sludges[J]. Biotechnology Techniques, 1996,10(11):803-808.
[22]
Eriksson L, Alm B. Study of flocculation mechanisms by observing effects of a complexing agent on activated sludge properties[J]. Water Science and Technology, 1991,24(7):21-28.
[23]
Liao B Q, Allen D G, Leppard G G, et al. Interparticle interactions affecting the stability of sludge flocs[J]. Journal of colloid and interface science, 2002,249(2):372-380.
[24]
Urbain V, Block J C, Manem J. Bioflocculation in activated sludge:an analytic approach[J]. Water Research, 2011,27(5):829-838.
[25]
Wilén B M, Jin B, Lant P. The influence of key chemical constituents in activated sludge on surface and flocculating properties[J]. Water Research, 2003,37(9):2127-2139.
[26]
Liu X M, Sheng G P, Yu H Q. DLVO approach to the flocculability of a photosynthetic H2-producing bacterium, Rhodopseudomonas acidophila[J]. Environmental Science & Technology, 2007,41(13):4620-4625.
[27]
Sobeck D C, Higgins M J. Examination of three theories for mechanisms of cation-induced bioflocculation[J]. Water Research, 2002,36(3):527-538.
[28]
Park C. Cations and activated sludge floc structure[D]. Blacksburg:Virginia Tech, 2002.
[29]
Wen Y, Zheng W, Yang Y, et al. Influence of Al3+ addition on the flocculation and sedimentation of activated sludge:Comparison of single and multiple dosing patterns.[J]. Water Research, 2015,75:201-209.
[30]
Bruus J H, Nielsen P H, Keiding K. On the stability of activated sludge flocs with implications to dewatering[J]. Water Research, 1992, 26(12):1597-1604.
[31]
Zhang T, Shao M F, Ye L. 454Pyrosequencing reveals bacterial diversity of activated sludge from 14sewage treatment plants[J]. Isme Journal, 2012,6(6):1137-1147.
[32]
Hu M, Wang X, Wen X, et al. Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis[J]. Bioresource technology, 2012,117:72-79.
[33]
Agunbiade M, Pohl C, Ashafa A. A Review of the Application of Biofloccualnts in Wastewater Treatment[J]. Polish Journal of Environmental Studies, 2016,25(4):1381-1389.