Based on the OMAERUV data daily product, the spatial and temporal distribution of the ultraviolet aerosol index (UVAI) in Gansu Province from 2008 to 2017 was analyzed, and the related factors were discussed. The results showed that the spatial pattern of UVAI nearly 10 years in the province gradually decreased from northwest to southeast region. The high value area of UVAI distributed in Jiuquan City and its neighboring areas, which was the center of absorbent aerosol pollution. The stability of UVAI in Gansu Province gradually decreased from northeast to southwest region. The monthly average value of UVAI showed an obvious regularity, and the monthly change of UVAI showed a "V" pattern every year; the UVAI level of four seasons was:winter > spring > autumn > summer, the seasons were basically synchronized, the UVAI of the four seasons had risen gradually during past ten years, and the sources of the absorbed aerosol dominated in four seasons were different. The analysis of air quality level Based on UVAI of PM2.5 indicated that the air quality in Gansu Province was mainly good; From the analysis of correlation between meteorological factors and UVAI, precipitation, temperature showed a significant positive correlation to UVAI, and the wind direction also had an important impact on its spatial distribution; the areas where the main distribution of vegetation coverage and UVAI was positively correlated distributed in the northwestern of Gansu Province and the center of Wuwei City, the areas where the main distribution of vegetation coverage and UVAI was negatively correlated distributed in Tianshui and Longnan in the south of Gansu Province, which had a higher vegetation coverage.From the point of the correlation between human activity factors and UVAI, regional GDP, industrial output value and UVAI had a significant positive correlation, especially the secondary industry and UVAI had the highest relevance; UVAI had a strong positive correlation with car ownership, total energy consumption and population density, which indicated that automobile exhaust, industrial emissions and construction dust were important source of absorbing aerosol. Based on the spatial and temporal distribution characteristics of UVAI and the analysis of natural and human activities in Gansu Province, some suggestions of reducing the intensity of human activities were proposed.
李逢帅, 巨天珍, 马超, 咸龙. 基于卫星遥感的甘肃省吸收性气溶胶的研究[J]. 中国环境科学, 2019, 39(10): 4082-4092.
LI Feng-shuai, JU Tian-zhen, MA Chao, XIAN Long. Absorption aerosol in Gansu Province based on satellite remote sensing. CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(10): 4082-4092.
张晓通.全球陆表下行短波辐射和光合有效辐射反演算法研究[D]. 武汉:武汉大学, 2010. Zhang Xiaotong. Inversion algorithm of global terrestrial surface downlink short-wave radiation and photosynthetic active radiation[D]. Wuhan:Wuhan university, 2010.
[2]
张亮林,潘竟虎.基于MODIS数据的中国气溶胶光学厚度时空分布特征[J]. 环境科学学报, 2018,38(11):4431-4439. Zhang Lianglin, Pan jinghu. Spatial-temporal distribution characteristics of aerosol optical thickness in China based on MODIS data[J]. Journal of environmental science, 2008,38(11):4431-4439.
[3]
陈莎莎.基于微脉冲激光雷达反演整层气溶胶光学厚度[D]. 合肥:中国科学技术大学, 2017. Chen Shasha. Inversion of whole layer aerosol optical thickness based on micro-pulse lidar[D]. Hefei:University of Science and Technology of China, 2017.
[4]
宿兴涛,许丽人,张志标,等.基于卫星观测的我国北方地区紫外吸收性气溶胶的时空分布研究[J]. 气候与环境研究, 2015,20(1):11-20. Su Xingtao, Xu Liren, Zhang Zhibiao, et al. Spatial-temporal distribution of ultraviolet absorbent aerosols in northern China based on satellite observations[J]. Climate and Environment Research, 2015, 20(1):11-20.
[5]
赵富强,王维和,邓小波,等.大气臭氧总量与吸收性气溶胶指数的关系[J]. 遥感学报, 2017,21(4):500-508. Zhao Fuqiang, Wang Weiwei, Deng Xiaobo, et al. Relationship between total atmospheric ozone and absorbability aerosol index[J]. Journal of Remote Sensing, 2017,21(4):500-508.
[6]
Herman J R, Bhartia P K, Torres O, et al. Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data[J]. Journal of Geophysical Research Atmospheres, 1997,102(D14):16911-16922.
[7]
刘状,孙曦亮,刘丹,等.2001~2017年中国北方省份气溶胶光学厚度的时空特征[J]. 环境科学学报, 2018,38(8):3177-3184. Liu, Sun Xiliang, Liu Dan, et al. Spatio-temporal characteristics of aerosol optical thickness in northern China from 2001 to 2017[J]. Journal of Environmental Science, 2008,38(8):3177-3184.
[8]
Bibi S, Alam K, Chishtie F, et al. Characterization of absorbing aerosol types using ground and satellites based observations over an urban environment[J]. Atmospheric Environment, 2016:S1352231016309438.
[9]
张芝娟,陈斌,等.利用OMI资料分析APEC期间吸收性气溶胶的时空分布特征[J]. 兰州大学学报(自然科学版), 2017,53(1):93-100. Zhang Zhijuan, Chen Bin, et al. Analysis of spatial and temporal distribution characteristics of absorbant aerosols during APEC using OMI data[J]. Journal of lanzhou university (natural science edition), 2017,53(1):93-100.
[10]
Tan K C, Lim H S, Mat Jafri M Z. Remote sensing assessment of absorbing aerosol over Peninsular Malaysia from OMI onboard Aura satellite[J]. Journal of Physics:Conference Series, 2017,852:012027.
[11]
王爽,巨天珍,谢顺涛,等.天水市紫外吸收性气溶胶时空动态的遥感监测[J]. 环境监测管理与技术, 2018,30(1):46-49. Wang Shuang, Ju Tianzhen, Xie shuntao, et al. Remote sensing monitoring of spatial and temporal dynamics of ultraviolet absorption aerosols in tianshui city[J]. Environmental monitoring management and technology, 2008,30(1):46-49.
[12]
王丽军.甘肃省生态足迹与能源消费年度变化关系研究[D]. 兰州:兰州大学, 2013. Wang Lijun. Research on the relationship between ecological footprint and energy consumption in gansu province[D]. Lanzhou:Lanzhou University, 2013.
[13]
岳军伟.甘肃主要森林类型固碳动态、潜力及影响机制[D]. 杨凌:中国科学院大学(中国科学院教育部水土保持与生态环境研究中心), 2018. Yue Junwei. Carbon sequestration dynamics, potential and impact mechanism of major forest types in gansu[D]. Yangling:University of Chinese Academy of Sciences (Research Center of Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences), 2018.
[14]
张宁,张武平,张萌.沙尘暴降尘对甘肃大气环境背景值的影响研究[J]. 环境科学研究, 2005,(5):6-10. Zhang N, Zhang W P, Zhang M. study on the influence of dust storm on atmospheric background value in gansu[J]. Environmental Science Research, 2005,(5):6-10.
[15]
杜君平,朱玉霞,刘悦,等.基于OMI数据的中国臭氧总量时空分布特征[J]. 中国环境监测, 2014,30(2):191-196. Du Junping, Zhu Yuxia, Liu Yue, et al. Spatial and temporal distribution characteristics of total ozone in China based on OMI data[J]. China Environmental Monitoring, 2014,30(2):191-196.
[16]
Smedt I D, Stavrakou T, Müller J F, et al. H2CO columns retrieved from GOME-2:first scientific results and progress towards the development of an operational product[C]//Eumetsat Meteorological Satellite Conference.
[17]
游志强,尉鹏,邱雄辉,等.基于卫星观测的2005~2015年京津冀地区NO2柱浓度分布及变化趋势[J]. 环境科学研究, 2016,29(10):1400-1407. You Zhiqiang, Wei Peng, Qiu Xionghui, et al. Distribution and change trend of NO2 column concentration in beijing-tianjin-hebei region from 2005 to 2015 based on satellite observation[J]. Environmental science research, 2016,29(10):1400-1407.
[18]
谢顺涛,巨天珍,葛建团,等.基于卫星遥感中国甲醛的时空分布及影响因子[J]. 中国环境科学, 2018,38(5):1677-1684. Xie Shuntao, Ju Tianzhen, Ge jiantuan, et al. Spatial-temporal distribution and influencing factors of formaldehyde in China based on satellite remote sensing[J]. Chinese Journal of Environmental Sciences, 2008,38(5):1677-1684.
[19]
Baek K H, Kim J H, Park R J, et al. Validation of OMI HCHO data and its analysis over Asia.[J]. Science of the Total Environment, 2014, 490:93-105.
[20]
刘宏庆,巨天珍.黑龙江省近12年甲醛柱浓度时空变化及其影响因素[J]. 中国环境科学, 2018,38(6):2001-2011. Liu Hongqing, Ju Tianzhen. Spatial-temporal variation of formaldehyde column concentration and its influencing factors in heilongjiang province in recent 12 years[J]. China environmental science, 2018,38(6):2001-2011.
[21]
Torres O, Tanskanen A, Veihelmann B, et al. Aerosols and surface UV products from ozone monitoring instrument observations:An overview[J]. Journal of Geophysical Research Atmospheres, 2007, 112(D24).
[22]
Tanr & Xe D. Derivation of tropospheric aerosol properties from satellite observations[J]. Comptes rendus-Géoscience, 2010,342(4):403-411.
[23]
陈科艺,彭志强.应用OMI卫星资料监测蒙古戈壁沙尘的传播[J]. 高原气象, 2012,31(3):798-803. Chen Keyi, Peng Zhiqiang. Application of OMI satellite data to monitor the transmission of gobi dust in Mongolia[J]. Plateau Meteorology, 2012,31(3):798-803.
[24]
杨东旭,刘毅,夏俊荣,等.华北及其周边地区秋季气溶胶光学性质的星载和地基遥感观测[J]. 气候与环境研究, 2012,17(4):422-432. Yang Dongxu, Liu Yi, Xia Junrong, et al. Spaceborne and ground-based remote sensing observations of autumn aerosol optical properties in north China and its surrounding areas[J]. Climate and Environment Research, 2012,17(4):422-432.
[25]
巨天珍,师贺雄,王彦,等.基于OMI卫星遥感数据的兰州市SO2空间分布分析[J]. 安全与环境学报, 2012,12(4):154-157. Ju Tianzhen, Shi Hexiong, Wang Yan, et al. Spatial distribution analysis of SO2 in Lanzhou based on OMI satellite remote sensing data[J]. Journal of Safety and Environment, 2012,12(4):154-157.
[26]
李逢帅,巨天珍,贾维平,等.基于OMI数据的兰州地区吸收性气溶胶指数时空分布特征研究[J]. 环境科学学报, 2018,38(12):4582-4591. Li Fengshuai, Ju Tianzhen, Jia Weiping, et al. Temporal and spatial distribution characteristics of the absorption aerosol index in Lanzhou based on OMI data[J]. Acta Scientiae Sinica Sinica, 2018,38(12):4582-4591.
[27]
潘竟虎,黄克军,李真. 2001~2010年疏勒河流域植被净初级生产力时空变化及其与气候因子的关系[J]. 生态学报, 2017.37(6):1888-1899. Pan Jinghu, Huang Kejun, Li Zhen. Temporal and spatial variation of net primary productivity of vegetation in the Shule River Basin from 2001 to 2010 and its relationship with climatic factors[J]. Acta Ecologica Sinica, 2017,37(6):1888-1899.
[28]
穆少杰,李建龙,陈奕兆,等.2001~2010年内蒙古植被覆盖度时空变化特征[J]. 地理学报, 2012,67(9):1255-1268. Mu Shaojie, Li Jianlong, Chen Yizhao, et al. Temporal and spatial variation characteristics of vegetation coverage in Inner Mongolia from 2001 to 2010[J]. Acta Geographica Sinica, 2012,67(9):1255-1268.
[29]
蒋贤玲,巩远发,等.青藏高原-热带印度洋地区大气热源的时空变化特征[J]. 成都信息工程学院学报, 2011,26(6):601-607. Jiang Xian-ling, Gong Yuan-Fa, et al. Spatial and Temporal Variation Characteristics of Atmospheric Heat Source over the Tibetan Plateau-Tropical Indian Ocean[J]. Journal of Chengdu University of Information Technology, 2011,26(6):601-607.
[30]
董自鹏,余兴,李星敏,等.基于MODIS数据的陕西省气溶胶光学厚度变化趋势与成因分析[J]. 科学通报, 2014,59(3):306-316. Dong Zhipeng, Yu Xing, Li Xingmin, et al. Trends and genesis of aerosol optical thickness in Shaanxi based on MODIS data[J]. Chinese Science Bulletin, 2014,59(3):306-316.
[31]
Goyal P, Sidhartha. Effect of winds on SO2 and SPM concentrations in Delhi[J]. Atmospheric Environment, 2002,36(17):2925-2930.
[32]
林俊,刘卫,李燕,等.大气气溶胶粒径分布特征与气象条件的相关性分析[J]. 气象与环境学报, 2009,25(1):1-5. Lin Jun, Liu Wei, Li Yan, et al. Correlation analysis between atmospheric aerosol particle size distribution and meteorological conditions[J]. Journal of Meteorology and Environment, 2009,25(1):1-5.
[33]
朱能文.颗粒物浓度的影响因素及变化规律[J]. 环境科学动态, 2005,(2):16-18. Zhu Nenwen. Influencing Factors and Variation Law of Particle Concentration[J]. Environmental Science, 2005,(2):16-18.
[34]
赵敬国,王式功,王嘉媛,等.兰州市空气污染与气象条件关系分析[J]. 兰州大学学报(自然科学版), 2013,49(4):491-496,503. Zhao Jingguo, Wang Shigong, Li Jiayuan, et al. Analysis of the relationship between air pollution and meteorological conditions in Lanzhou City[J]. Journal of Lanzhou University (Natural Science), 2013,49(4):491-496,503.
[35]
周曙东,欧阳纬清,葛继红.京津冀PM2.5的主要影响因素及内在关系研究[J]. 中国人口·资源与环境, 2017,27(4):102-109. Zhou Yidong, Ouyang Weiqing, Ge Jihong. Study on the Main Influencing Factors and Intrinsic Relationship of Beijing-Tianjin-Hebei PM2.5[J]. China Population, Resources and Environment, 2017, 27(4):102-109.
[36]
陈璞珑,王体健,谢晓栋,等.基于数值模式的细颗粒物来源解析[J]. 科学通报, 2018,63(18):1829-1838. Chen Wei, Wang Tijian, Xie Xiaodong, et al. Analysis of source of fine particles based on numerical model[J]. Chinese Science Bulletin, 2018,63(18):1829-1838.
[37]
卢秀娟,巨天珍,谢顺涛,等.城市大气臭氧柱浓度时空变化研究——以天水为例[J]. 地球与环境, 2017,45(6):612-619. Lu Xiujuan, Ju Tianzhen, Xie Shuntao, et al. Spatial and Temporal Variations of Urban Atmospheric Ozone Concentration-Taking Tianshui as an Example[J]. Earth and Environment, 2017,45(6):612-619