Pollution characteristics and ozone formation potential of VOCs in the plastic foam shoe manufacturing centre
LI Ting-ting1,2, LIANG Xiao-ming2, LU Qing2, LIU Ming2, CHEN Zhi-hang2, WANG Shuo2, LU Hai-tao2, MU Gui-zhen2,3, GUO Song-jun1, HE Qiu-sheng4, CHEN Lai-guo2
1. School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; 2. State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China; 3. School of Resources and Environment, Yangtze University, Wuhan 434023, China; 4. School of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan 030024, China
Abstract:Five monitoring sites were set up in and around the plastic foam shoe manufacturing center in Wuchuan, Guangdong to study the pollution characteristics and ozone formation potentials of atmospheric VOCs. The results showed that the composition of atmospheric VOCs was predominantly alkanes (38.4%), oxygen-containing VOCs (33.5%), and aromatic hydrocarbons (19.5%). The total concentration of 80 kinds of VOCs ranged from 137.1μg/m3 to 169.0μg/m3 with an average of 149.1μg/m3. N-pentane, isopentane, n-butane, isobutane, formaldehyde, toluene, m/o-xylene, acetone, methyl ethyl ketone, cyclohexanone, methyl methacrylate, and ethyl acetate were characteristic VOCs of this shoe manufacture industry. The spatial trends of the total VOC concentrations, characteristic VOC types (oxygen-containing volatile organic compounds, aromatic hydrocarbons) and characteristic VOC components (toluene, o-xylene, m-xylene, methyl ethyl ketone, and ethyl acetate) all showed a spatial pattern that the concentration was largest at contaminated area, followed by affected area (downwind) and control area (upwind). Additionally, the ozone formation potential (OFP) of VOCs was estimated with the maximum incremental reactivity (MIR) method. The mean value of OFP was 544.6μg/m3, indicating that the manufacture of plastic foam shoes tended to cause the pollution of ambient VOCs and have a significant impact on ozone formation.
李婷婷, 梁小明, 卢清, 刘明, 陈志航, 王硕, 陆海涛, 穆桂珍, 郭送军, 何秋生, 陈来国. 泡沫塑料鞋制造区VOCs污染特征及臭氧生成潜势[J]. 中国环境科学, 2020, 40(8): 3260-3267.
LI Ting-ting, LIANG Xiao-ming, LU Qing, LIU Ming, CHEN Zhi-hang, WANG Shuo, LU Hai-tao, MU Gui-zhen, GUO Song-jun, HE Qiu-sheng, CHEN Lai-guo. Pollution characteristics and ozone formation potential of VOCs in the plastic foam shoe manufacturing centre. CHINA ENVIRONMENTAL SCIENCECE, 2020, 40(8): 3260-3267.
鲁修禄.2018年广东省生态环境状况公报[R].广州:广东省生态环境厅, 2018:3-5. Lu X L. 2018 Report on the state of Guangdong provincial ecology and environment[R]. Guangzhou:Guangdong Provincial Department of Ecological Environment, 2018:3-5.
[2]
Gouw J D, Warneke C. Measurements of volatile organic compounds in the earth's atmosphere using proton-transfer-reaction mass spectrometry[J]. Mass Spectrometry Reviews, 2007,26(2):223-257.
[3]
齐冰,牛彧文,杜荣光,等.杭州市近地面大气臭氧浓度变化特征分析[J].中国环境科学, 2017,37(2):443-451. Qi B, Niu Y W, Du R G, et al. Characteristics of surface ozone concentration in urban site of Hangzhou[J]. China Environmental Science, 2017,37(2):443-451.
[4]
贾海鹰,尹婷,瞿霞,等.2015年北京及周边地区臭氧浓度特征及来源模拟[J].中国环境科学, 2017,37(4):1231-1238. Jia H Y, Yin T, Qu X, et al. Characteristics and source simulation of ozone in Beijing and its surrounding areas in 2015[J]. China Environmental Science, 2017,37(4):1231-1238.
[5]
蒋美青,陆克定,苏榕,等.我国典型城市群O3污染成因和关键VOCs活性解析[J].科学通报, 2018,63(12):1130-1141. Jiang M Q, Lu K D, Su R, et al. Ozone formation and key VOCs in typical Chinese city clusters[J]. Chinese Science Bulletin, 2018, 63(12):1130-1141.
[6]
Liu Y, Xie Q, Li X, et al. Profile and source apportionment of volatile organic compounds from a complex industrial park[J]. Environmental Science:Processes & Impacts, 2019,21(1):9-18.
[7]
刘玲英,蔡慧华,罗超.制鞋行业挥发性有机化合物(VOCs)排放特征研究[J].广东化工, 2012,39(6):288-289,263. Lui L Y, Cai H H, Luo C, et al. Volatile organic compounds (VOCs) emission characteristics study of shoemaking industry[J]. Guangdong Chemical Industry, 2012,39(6):288-289,263.
[8]
余宇帆,卢清,郑君瑜,等.珠江三角洲地区重点VOC排放行业的排放清单[J].中国环境科学, 2011,31(2):195-201. Yu Y F, Lu Q, Zheng J Y, et al. VOC emission inventory and its uncertainty from the key VOC-related industries in the Pearl River Delta Region[J]. China Environmental Science, 2011,31(2):195-201.
[9]
张家欢.深圳市制鞋行业挥发性有机物污染的治理[J].环境与发展, 2019,31(4):25-26. Zhang J H. Treatment of volatile organic compounds contamination in Shenzhen's shoe industry[J]. Environment and Development, 2019, 31(4):25-26.
[10]
熊超,王继钦,陈军辉,等.四川省制鞋行业挥发性有机物成分谱研究[J].环境污染与防治, 2019,41(4):430-434,451. Xiong C, Wang J Q, Chen J H, et al. Study on the source profile of volatile organic compounds in the shoe industry of Sichuan[J]. Environmental Pollution & Control, 2019,41(4):430-434,451.
[11]
Zeng J Y, Yu Y F, Mo Z W, et al. Industrial sector-based volatile organic compound source profiles measured in manufacturing facilities in the Pearl River Delta, China[J]. Science of the Total Environment, 2013,456-457(jul.1):127-136.
[12]
曹方方,张凤菊,聂晓玲,等.罐采样/气相色谱-质谱法分析环境空气中57种臭氧前体物[J].中国环境监测, 2019,35(4):115-122. Cao F F, Zhang F J, Nie X L, et al. Determination of 57ozone precursors compounds in ambient air using canister sampling followed by GC-MS[J]. Environmental Monitoring in China, 2019,35(4):115-122.
[13]
何晓朗,谭吉华,郭送军,等.2014年北京APEC期间大气醛酮污染物的污染特征与来源分析[J].环境科学, 2016,37(3):801-806. He X L, Tan J H, Guo S J, et al. Chemical characteristics and sources of atmospheric carbonyls during the 2014Beijing APEC[J]. Environmental Science, 2016,37(3):801-806.
[14]
Carter W P L. Development of ozone reactivity scales for volatile organic compounds[J]. Air & Waste Manage Association, 1994,44:881-889.
[15]
Carter W P L. Updated maximum incremental reactivity scale and hydrocarbon bin reactivities for regulatory applications[R]. California:California Air Resources Board, 2009.
[16]
张银菊.福建省挥发性有机物排放清单及臭氧生成潜势研究[D].厦门:厦门大学, 2017. Zhang Y J. Emission inventory of volatile organic compounds and ozone formation potential in Fujian[D]. Xiamen:Xiamen University, 2017.
[17]
印红玲,袁桦蔚,叶芝祥,等.成都市大气中挥发性有机物的时空分布特征及臭氧生成潜势研究[J].环境科学学报, 2015,35(2):386-393. Yin H L, Yuan H W, Ye Z X, et al. Temporal and spatial distribution of VOCs and their OFP in the atmosphere of Chengdu[J]. Acta Scientiae Circumstantiae, 2015,35(2):386-393.
[18]
古颖纲,虞小芳,杨闻达,等.广州市天河区2016年雨季挥发性有机物污染特征及来源解析[J].环境科学, 2018,39(6):26-35. Gu Y G, Yu X F, Yang W D, et al. Characteristics and source apportionment of volatile organic compounds in the rainy season of Guangzhou City[J]. Environmental Science, 2018,39(6):26-35.
[19]
杨笑笑,汤莉莉,张运江,等.南京夏季市区VOCs特征及O3生成潜势的相关性分析[J].环境科学, 2016,37(2):443-451. Yang X X, Tang L L, Zhang Y J, et al. Correlation analysis between characteristics of VOCs and ozone formation potential in summer in Nanjing urban district[J]. Environmental Science, 2016,37(2):443-451.
[20]
裴冰,刘娟,孙焱婧.某化学工业区挥发性有机物组成特征及大气化学反应活性[J].环境监测管理与技术, 2011,23(S1):1-6+23. Pei B, Liu J, Sun Y J, et al. The composition and chemical reactivity of volatile organic compounds (VOCs) in a certain chemical industry park[J]. The Administration and Technique of Environmental Monitoring, 2011,23(S1):1-6,23.
[21]
虞小芳,程鹏,古颖纲,等.广州市夏季VOCs对臭氧及SOA生成潜势的研究[J].中国环境科学, 2018,38(3):830-837. Yu X F, Cheng P, Gu Y G, et al. Formation potential of ozone and secondary organic aerosol from VOCs oxidation in summer in Guangzhou, China[J]. China Environmental Science, 2018,38(3):830-837.
[22]
杨干,魏巍,吕兆丰,等.APEC期间北京市城区VOCs浓度特征及其对VOCs排放清单的校验[J].中国环境科学, 2016,36(5):1297-1304. Yang G, Wei W, Lv Z F, et al. Characterization of seasonal variation of non-methane hydrocarbons in the urban atmosphere in Shenzhen[J]. China Environmental Science, 2016,36(5):1297-1304.
[23]
何丽,罗萌萌,潘巍,等.成都秋季大气污染过程VOCs特征及SOA生成潜势[J].中国环境科学, 2018,38(8):2840-2845. He L, Luo M M, Pan W, et al. Characteristics and forming potential of secondary organic aerosols of volatile organic compounds during an air pollution episode in autumn Chengdu[J]. China Environmental Science, 2018,38(8):2840-2845.
[24]
莫梓伟,邵敏,陆思华.中国挥发性有机物(VOCs)排放源成分谱研究进展[J].环境科学学报, 2014,34(9):2179-2189. Mo Z W, Shao M, Lu S H, et al. Review on volatile organic compounds (VOCs) source profiles measured in China[J]. Acta Scientiae Circumstantiae, 2014,34(9):2179-2189.
[25]
区家敏.珠江三角洲VOCs排放来源识别、验证与基于反应活性的控制对策研究[D].广州:华南理工大学, 2014. Ou J M. Characterization and validation of volatile organic compounds (VOCs) emission sources and reactivity-based control strategy in the Pearl River Delta region[D]. Guangzhou:South China University of Technology, 2014.
[26]
余宇帆.珠江三角洲地区典型工业VOCs源排放成分谱研究[D].广州:华南理工大学, 2012. Yu Y F. A study onchemical compositions of typical industrial VOC emission sources in the Pearl River Delta region[D]. Guangzhou:South China University of Technology, 2012.
[27]
陆思华,白郁华,张广山,等.大气中挥发性有机化合物(VOCs)的人为来源研究[J].环境科学学报, 2006,26(5):757-763. Lu S H, Bai Y H, Zhang G S, et al. Source apportionment of anthropogenic emissions of volatile organic compounds[J]. Acta Scientiae Circumstantiae, 2006,26(5):757-763.
[28]
朱少峰,黄晓锋,何凌燕,等.深圳大气VOCs浓度的变化特征与化学反应活性[J].中国环境科学, 2012,32(12):2140-2148. Zhu S F, Huang X F, He L Y, et al. Variation characteristics and chemical reactivity of ambient VOCs in Shenzhen[J]. China Environmental Science, 2012,32(12):2140-2148.
[29]
王琴,刘保献,张大伟,等.北京市大气VOCs的时空分布特征及化学反应活性[J].中国环境科学, 2017,37(10):3636-3646. Wang Q, Liu B X, Zhang D W, et al. Temporal and spatial distribution of VOCs and their role in chemical reactivity in Beijing[J]. China Environmental Science, 2017,37(10):3636-3646.
[30]
张敬巧,吴亚君,李慧,等.廊坊开发区秋季VOCs污染特征及来源解析[J].中国环境科学, 2019,39(8):3186-3192. Zhang J Q, Wu Y J, Li H, et al. Characteristics and source apportionment of ambient volatile organic compounds in autumn in Langfang development zones[J]. China Environmental Science, 2019, 39(8):3186-3192.
[31]
张玉龙.泡沫塑料基础知识读本[M].北京:化学工业出版社, 2013:238-265. Zhang Y L. Primer of plastic foam[M]. Beijing:Chemical Industry Press, 2013:238-265.
[32]
花卉,唐琼英,吐尔孙那依·比哈孜.GB/T 22053-2008《戊烷发泡剂》国家标准解读[J].中国石油和化工标准与质量, 2011,31(10):249. Hua H, Tang Q Y, Tuersunnayi B H Z. The interpretation of "Pentane Vesicant" (GB/T 22053-2008)[J]. China Petroleum and Chemical Standard and Quality, 2011,31(10):249.
[33]
李及珠.低密度聚乙烯泡沫片材挤出成型技术的改进[J].塑料科技, 2002,(6):18-21. Li J Z. Improvement of extrusion moulding technology of LDPE foamed sheet[J]. Plastics Science and Technology, 2002,(6):18-21.
[34]
林少琼.涂料油墨生产行业VOCs污染防治技术研究[J].中国资源综合利用, 2018,36(7):142-144. Lin S Q. Research on VOCs pollution control technology in coatings and ink manufacturing industry[J]. China Resources Comprehensive Utilization, 2018,36(7):142-144.
[35]
张大洲,卢文新,陈风敬,等.甲基丙烯酸甲酯生产技术现状及国内发展趋势[J].化肥设计, 2018,56(5):6-10. Zhang D Z, Lu W X, Chen F J, et al. The status quo of production technology of methyl methacrylate and its development trend in China[J]. Chemical Fertilizer Design, 2018,56(5):6-10.
[36]
周郁潮,郑海英,冯简青,等.珠三角某市制鞋行业有机溶剂成分检测分析[J].职业卫生与应急救援, 2015,33(3):176-177. Zhou Y C, Zhen H Y, Feng J Q, et al. The detection of organic solvent composition in shoe industry of a city in the Pearl River Delta region[J]. Occupational Health and Emergency Rescue, 2015,33(3):176-177.
[37]
鲁君,王红丽,陈长虹,等.上海市机动车尾气VOCs组成及其化学反应活性[J].环境污染与防治, 2010,32(6):19-26. Lu J, Wang H L, Chen C H, et al. The composition and chemical reactivity of volatile organic compounds (VOCs) from vehicle exhaust in Shanghai, China[J]. Environmental Pollution & Control, 2010, 32(6):19-26.
[38]
朱波,王川,于广河,等.深圳城市大气中非甲烷烃季节变化特征[J].中国环境科学, 2018,38(2):418-425. Zhu B, Wang C, Yu G H, et al. Characterization of seasonal variation of non-methane hydrocarbons in the urban atmosphere in Shenzhens[J]. China Environmental Science, 2018,38(2):418-425.