A review on stress cultivation strategies of oleginous microalgae
NIE Yu-dong1,2,3, GENG Yuan-yuan1, ZHANG Xian-ming1, JIANG Guang-ming1
1. Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China; 2. School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China; 3. State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Abstract:Several stress culture methods as well as their effects on the growth and lipid production of the oleaginous microalgae were firstly introduced in this paper. How the stress culture method affects the lipid synthesis and the metabolic process were then discussed. Finally, a series of suggestions in each stress culture method were given for the practical application. This review is expected to give a guideline in selection of cultivate strategy in the industrialization of microalgae biodiesel production.
Brennan L, Owende P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products[J]. Renewable & Sustainable Energy Reviews, 2010, 14(2):557-577.
[2]
李华,王伟波,刘永定,等.微藻生物柴油发展与产油微藻资源利用[J]. 可再生能源, 2011,29(4):84-89. Li H, Wang W B, Liu Y D, et al. Development of microalgae biodiesel and utilization of oil-producing microalgae resources[J]. Renewable Energy, 2011,29(4):84-89.
[3]
Borowitzka M, Moheimani N. Sustainable biofuels from algae[J]. Mitigation and Adaptation Strategies for Global Change, 2013,18(1):13-25.
[4]
Milano J, Ong H C, Masjuki H H, et al. Microalgae biofuels as an alternative to fossil fuel for power generation[J]. Renewable & Sustainable Energy Reviews, 2016,5(8):180-197.
[5]
Yang X Y, Guo F, Xue S, et al. Carbon distribution of algae-based alternative aviation fuel obtained by different pathways[J]. Renewable and Sustainable Energy Revview, 2016,54:1129-1147.
[6]
Ullah K, Ahmad M, Sharma V K, et al. Algal biomass as a global source of transport fuels:Overview and development perspectives[J]. Progress in Natural Science:Materials International, 2014,24(4):329-339.
[7]
李方芳.微藻固定CO2生产生物柴油的研究[D]. 武汉:武汉科技大学, 2012. Li F F. Research on the production of biodiesel by fixing CO2 by microalgae[D]. Wuhan:Wuhan University of Science and Technology, 2012.
[8]
Huang G H, Chen F, Wei D, et al. Biodiesel production by microalgal biotechnology[J]. Applied Energy, 2010,87(1):38-46.
[9]
Griffiths M J, Hille R P, Harrison S T L. Lipid productivity, settling potential and fatty acid profile of 11microalgal species grown under nitrogen replete and limited conditions[J]. Journal of Applied Phycology, 2012,24(5):989-1001.
[10]
Breuer G, Lamers P P, Martens D E, et al. starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains[J]. Bioresource Technology, 2012,124:217-226.
[11]
Carruthers D N, Godwin C M, Hietala D C, et al. Biodiversity improves life cycle sustainability metrics in algal biofuel production[J]. Environmental Science & Technology, 2019,53(15):9279-9288.
[12]
董学卫.富油微藻繁育技术优化与蓝藻产不饱和脂肪酸的基因工程[D]. 南宁:广西大学, 2018. Dong X W. Optimization of breeding technology of oil-rich microalgae and genetic engineering of cyanobacteria to produce unsaturated fatty acids[D]. Nanning:Guangxi University, 2018.
[13]
Klassen V, Blifernez-Klassen O, Hoekzema Y, et al. A novel one-stage cultivation/fermentation strategy for improved biogas production with microalgal biomass[J]. Journal of Biotechnology, 2015,215:44-51.
[14]
Paliwal C, Mitra M, Bhayani K, et al. Abiotic stresses as tools for metabolites in microalgae[J]. Bioresource Technology, 2017,244(Pt2):1216-1226.
[15]
Chen B, Wan C, Mehmood M A, et al. Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products–A review[J]. Bioresource Technology, 2017,244(Pt2):1198-1206.
[16]
An M, Mou S, Zhang X, et al. Temperature regulates fatty acid desaturases at a transcriptional level andmodulates the fatty acid profile in the Antarctic microalga Chlamydomonas sp. ICE-L[J]. Bioresource Technology, 2013,134:151-157.
[17]
He Q, Yang H, Wu L, et al. Effect of light intensity on pH ysiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae[J]. Bioresource Technology, 2015,191:219-228.
[18]
Yang J, Cao J, Xing G, et al. Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341[J]. Bioresource Technology, 2015,175:537-544.
[19]
Mata T M, Martins A A, Caetano N S. Microalgae for biodiesel production and other applications:a review[J]. Renewable and Sustainable Energy Reviews, 2010,14(1):217-232.
[20]
薛敏.氮磷培养条件对栅藻SP-01的生长和代谢产物的影响[D]. 广州:中山大学, 2012. Xue M. Effects of Nitrogen and phosphate on the growth and metabolism of Scenedesmus SP-01[D].Guangzhou SUN YAT-SEN University, 2012.
[21]
Tang D, Han W, Li P, et al. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels[J]. Bioresource Technology, 2011, 102(3):3071-3076.
[22]
卢鸿翔.核诱变及碳胁迫促进微藻光合作用及生长固碳的机理研究[D]. 杭州:浙江大学, 2018. Lu H X. Study on the mechanism of nuclear mutagenesis and carbon stress on promoting photosynthesis and carbon fixation of microalgae[D]. Hangzhou:Zhejiang University, 2018.
[23]
Wu S, Gu W, Huang A, et al. Elevated CO2 improves both lipid accumulation and growth rate in the glucose-6-phosphate dehydrogenase engineered phaeodactylum tricornutum[J]. Microbial Cell Factories, 2019,18(1):161.
[24]
Moghimifam R, Niknam V, Ebrahimzadeh H, et al. The influence of different CO2 concentrations on the biochemical and molecular response of two isolates of Dunaliella sp. (ABRIINW-CH2 and ABRIINW-SH33)[J]. Journal of Applied Phycology, 2020,32(1):175-187.
[25]
李林,郑立,郑明刚,等.富碳培养对海洋富油微藻油脂积累特性的影响[J]. 水生生物学报, 2013,37(6):1013-1019. Li L, Zheng L, Zheng M G, et al. Effects of carbon-rich culture on the oil accumulation characteristics of marine oil-rich microalgae[J]. Acta Hydrobiology, 2013,37(6):1013-1019.
[26]
郝晓地,吴宇涵,胡沅胜.CO2对可沉微藻油脂含量的影响[J]. 中国给水排水, 2018,34(11):1-5. Hao X D, Wu Y H, Hu Y S. The influence of CO2 on the oil content of sinkable microalgae[J]. China Water & Wastewater, 2018,34(11):1-5.
[27]
刘香华,刘雷,曾慧卿.不同碳源及光照对小球藻生长和产油脂的影响[J]. 安全与环境学报, 2012,12(3):6-10. Liu X H, Liu L, Zeng H Q. Effects of different carbon sources and light on the growth and oil production of Chlorella[J]. Journal of Safety and Environment, 2012,12(3):6-10.
[28]
Xie Z, Lin W, Liu J, et al. Mixotrophic cultivation of Chlorella for biomass production by using pH-stat culture medium:Glucose-acetate-phosphorus (GAP)[J]. Bioresource Technology, 2020,313:123506.
[29]
Manzoor M, Jabeen F, Younis T, et al. Sugarcane bagasse hydrolysate as organic carbon substrate for mixotrophic cultivation of Nannochloropsis sp. BR2[J]. Waste and Biomass Valorization, 2021:2321-2331.
[30]
Zhu J, Wakisaka M. Effect of two lignocellulose related sugar alcohols on the growth and metabolites biosynthesis of Euglena gracilis[J]. Bioresource Technology, 2020,303:122950.
[31]
苏怡,高保燕,黄罗冬,等.不同氮源及氮浓度对真眼点藻纲微藻生长及油脂积累的影响[J]. 水生生物学报, 2017,41(3):677-691. Su Y, Gao B Y, Huang L D, et al. Effects of different nitrogen sources and nitrogen concentrations on the growth and lipid accumulation of microalgae in the class Euphorbiaceae[J]. Acta Hydrobiological Sciences, 2017,41(3):677-691.
[32]
赵艳,汪成.低氮胁迫对蛋白核小球藻生化组分和絮凝性能的影响[J]. 植物营养与肥料学报, 2019,25(3):143-151. Zhao Y, Wang C. Effects of low nitrogen stress on the biochemical components and flocculation performance of Chlorella pyrenoidosa[J]. Journal of Plant Nutrition and Fertilizer, 2019,25(3):143-151.
[33]
程蔚兰,邵雪梅,宋程飞,等.氮胁迫对埃氏小球藻生长及油脂积累的影响[J]. 生物技术通报, 2017,33(11):160-165. Cheng W L, Shao X M, Song C F, et al. Effects of nitrogen stress on the growth and lipid accumulation of Chlorella escherichia[J]. Biotechnology Bulletin, 2017,33(11):160-165.
[34]
吴琼芳.不同氮素浓度下产油普通小球藻的光合生理及生化特征研究[D]. 广州:暨南大学, 2016. Wu Q F. photosynthetic physiological and biochemical characteristics of Chlorella vulgaris under different nitrogen concentrations[D]. Guangzhou:Jinan University, 2016.
[35]
Arora N, Patel A, Pruthi P A, et al. Synergistic dynamics of nitrogen and phosphorous influences lipid productivity in Chlorella minutissima for biodiesel production[J]. Bioresource. Technology, 2016,213:79-87.
[36]
Chu F F, Chu P N, Cai P J, et al. Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency[J]. Bioresource technology, 2013,134:341-346.
[37]
Qari H A, Oves M. Fatty acid synthesis by Chlamydomonas reinhardtii in phosphorus limitation[J]. Journal of Bioenergetics and Biomembranes, 2020,52(1):27-38.
[38]
Yu S J, Hu H, Zheng H, et al. Effect of different phosphorus concentrations on biodiesel production from Isochrysis zhangjiangensis under nitrogen sufficiency or deprivation condition[J]. Applied Microbiology and Biotechnology, 2019,103(12):5051-5059.
[39]
Reitan K I, Rainuzzo J R, Olsen Y. Effect of nutrient limitation on fatty acid and lipid content of marine microalgae[J]. Journal of Phycology, 1994,30(6):972-979.
[40]
Khozin-Goldberg I, Cohen Z. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus[J]. Phytochemistry, 2006,67(7):696-701.
[41]
Ahmad Latiffi N A, Radin Mohamed R M S, Apandi N M, et al. Experimental assessment on effects of growth rates microalgae scenedesmus sp. in different conditions of pH, temperature, light intensity and photoperiod[C]//Key engineering materials. Trans Tech Publications Ltd, 2017,744:546-551.
[42]
尹继龙,唐小红,郑洪立,等,等.不同光质对小球藻光自养培养积累油脂的影响[J]. 生物加工过程, 2014,12(5):62-68. Yin J L, Tang X H, Zheng H L, et.al. Effect of light wavelengths on lipid accumulation of Chlorella vulgaris in photoautotrophic culture[J]. Bioprocessing, 2014,12(5):62-68.
[43]
孙建瑞,赵君峰,符丹丹,等.不同光质对衣藻(Chlamydomonas sp.212)生长及油脂积累的影响[J]. 应用与环境生物学报, 2020,26(4):1016-1022. Sun J R, Zhao J F, Fu D D, et al. Effects of different lights on the growth and lipid accumulation of Chlamydomonas sp. 212[J]. Chinese Journal of Applied and Environmental Biology, 2020,26(4):1016-1022.
[44]
Skerratt J H, Davidson A D, Nichols P D, et al. Effect of UV-B on lipid content of three Antarctic marine phytoplankton[J]. Phytochemistry, 1998,49(4):999-1007.
[45]
Liang Y, Beardall J, Heraud P. Effect of UV radiation on growth, chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae)[J]. Phycologia, 2006,45(6):605-615.
[46]
Guihéneuf F, Fouqueray M, Mimouni V, et al. Effect of UV stress on the fatty acid and lipid class composition in two marine microalgae Pavlova lutheri (Pavlovophyceae) and Odontella aurita (Bacillariophyceae)[J]. Journal of applied Phycology, 2010,22(5):629-638.
[47]
韩飞.高温胁迫与超声刺激促进微藻油脂积累的过程及机理[D]. 济南:山东大学, 2016. Han F. The process and mechanism of high temperature stress and ultrasonic stimulation promoting oil accumulation in microalgae[D]. Jinan:Shandong University, 2016.
[48]
Chokshi K, Pancha I, Trivedi K, et al. Biofuel potential of the newly isolated microalgae Acutodesmus dimorphus under temperature induced oxidative stress conditions[J]. Bioresource Technology, 2015, 180:162-171.
[49]
Zhu C J, Lee Y K, Chao T M. Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1[J]. Journal of Applied Phycology, 1997,9(5):451-457.
[50]
Tatsuzawa H, Takizawa E. Changes in fatty acid composition of Pavlova lutheri (Prymnesiophyceae) affected by culturing conditions[J]. Fisheries Science, 1995,61(2):363-364.
[51]
Jiang H, Gao K. Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom phaeodactylum tricornutum (bacillariophyceae)[J]. Journal of Phycology, 2004,40(4):651-654.
[52]
Peng L, Lan C Q, Zhang Z, et al. Control of protozoa contamination and lipid accumulation in Neochloris oleoabundans culture:effects of pH and dissolved inorganic carbon[J]. Bioresource Technology, 2015,197:143-151.
[53]
Gardner R D, Cooksey K E, Mus F, et al. Use of sodium bicarbonate to stimulate triacylglycerol accumulation in the chlorophyte Scenedesmus sp. and the diatom phaeodactylum tricornutum[J]. Journal of Applied Phycology, 2012,24(5):1311-1320.
[54]
Gardner R, Peters P, Peyton B, et al. Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the chlorophyta[J]. Journal of Applied Phycology, 2011, 23(6):1005-1016.
[55]
Takagi M, Yoshida T. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells[J]. Journal of Bioscience and Bioengineering, 2006,101(3):223-226.
[56]
Pancha I, Chokshi K, Mishra S. Enhanced biofuel production potential with nutritional stress amelioration through optimization of carbon source and light intensity in Scenedesmus sp. CCNM 107[J]. Bioresource Technology, 2015,179:565-572.
[57]
Mitra M, Patidar S K, George B, et al. A euryhaline Nannochloropsis gaditana with potential for nutraceutical (EPA) and biodiesel production[J]. Algal Research, 2015,8:161-167.
[58]
Jiang Y, Chen F. Effects of salinity on cell growth and docosahexaenoic acid content of the heterotrophic marine microalga Crypthecodinium cohnii[J]. Journal of Industrial Microbiology and Biotechnology, 1999,23(6):508-513.
[59]
王垿,孙昕,李鹏飞,等.双对栅藻FACHB-78甘油三酯积累的盐胁迫条件优化[J]. 中国环境科学, 2019,39(12):5248-5253. Wang X, Sun X, Li P F, et al. Optimization of salt stress condition for accumulation of triglycerides in Scenedesmus bijuga FACHB-78.[J]. China Environmental Science, 2019,39(12):5248-5253.
[60]
Kim H, Jang S, Kim S, et al. The small molecule fenpropimorph rapidly converts chloroplast membrane lipids to triacylglycerols in Chlamydomonas reinhardtii[J]. Frontiers in Microbiology, 2015,6:54.
[61]
Kim S, Kim H, Ko D, et al. Rapid induction of lipid droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A[J]. PLoS One, 2013,8(12):e81978.
[62]
Zalogin T R, Pick U. Inhibition of nitrate reductase by azide in microalgae results in triglycerides accumulation[J]. Algal Research, 2014,3:17-23.
[63]
Rosa G, Moraism G, Costa J A V. Fed-batch cultivation with CO2 and monoethanolamine:influence on Chlorella fusca LEB 111 cultivation, carbon biofixation and biomolecules production[J]. Bioresource Technology, 2019,273:627-633.
[64]
Sun Z, Zhang D, Yan C, et al. Promotion of microalgal biomass production and efficient use of CO2 from flue gas by monoethanolamine[J]. Journal of Chemical Technology & Biotechnology, 2015,90(4):730-738.
[65]
Taoka Y, Nagano N, Okita Y, et al. Effect of Tween 80 on the growth, lipid accumulation and fatty acid composition of Thraustochytrium aureum ATCC 34304[J]. Biotechnology and Bioengineering, 2011, 111(4):420-424.
[66]
李大菲,赵永腾,余旭亚.褪黑素对单针藻油脂积累的影响[J]. 水生生物学报, 2018,42(2):421-427. Li D F, Zhao Y T, Yu X Y. The effect of melatonin on the accumulation of lipids in mononeedle algae[J]. Chinese Journal of Hydrobiology, 2018,42(2):421-427.
[67]
Kwak H S, Kim J Y H, Woo H M, et al. Synergistic effect of multiple stress conditions for improving microalgal lipid production[J]. Algal Research, 2016,19:215-224.
[68]
Boelen P, van Dijk R, Damsté J S S, et al. On the potential application of polar and temperate marine microalgae for EPA and DHA production[J]. AMB Express, 2013,3(1):26.
[69]
郭琪,郑凌凌,沈伟,等.不同二氧化碳浓度培养对两株栅藻碳固定速率及油脂积累的影响[J]. 水生生物学报, 2016,40(2):414-418. Guo Q, Zheng L L, Shen W, et al. Effects of culture with different carbon dioxide concentrations on the carbon fixation rate and lipid accumulation of two Scenedesmus strains[J]. Acta Hydrobiology, 2016,40(2):414-418.
[70]
Patidar S K, Mitra M, George B, et al. Potential of Monoraphidium minutum for carbon sequestration and lipid production in response to varying growth mode[J]. Bioresource Technology, 2014,172:32-40.
[71]
Bajhaiya A K, Dean A P, Zeef L A H, et al. PSR1is a global transcriptional regulator of phosphorus deficiency responses and carbon storage metabolism in Chlamydomonas reinhardtii[J]. Plant Physiology, 2016,170(3):1216-1234.
[72]
Berges J A, Harrison P J. Nitrate reductase activity quantitatively predicts the rate of nitrate incorporation under steady state light limitation:a revised assay and characterization of the enzyme in three species of marine phytoplankton[J]. Limnology and Oceanography, 1995,40(1):82-93.
[73]
Levitan O, Dinamarca J, Zelzion E, et al. Remodeling of intermediate metabolism in the diatom phaeodactylum tricornutum under nitrogen stress[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(2):412-417.
[74]
乔倩,王朝晖,郭鑫.不同氮源对中肋骨条藻(Skeletonema costatum)生长的影响[J]. 生态学杂志, 2016,35(8):2110-2116. Qiao Q, Wang Z H, Guo X. Effects of nitrogen sources on the growth of Skeletonema costatum[J]. Chinese Journal of Ecology, 2016, 35(8):2110-2116.
[75]
Guerra L T, Levitan O, Frada M J, et al. Regulatory branch points affecting protein and lipid biosynthesis in the diatom Phaeodactylum tricornutum[J]. Biomass and Bioenergy, 2013,59:306-315.
[76]
冯佳,朱顺妮,许瑾,等.氮胁迫下绿球藻GIEC-38光合固碳富集油脂机理研究[J]. 太阳能学报, 2020,41(2):13-19. Feng J, Zhu S N, Xu J, et.al. Gene expression related to photosynthetic carbon-sequestration and lipid enrichment of Chlorococcum sp. GIEC-38 under nitrogen deficiency stress[J]. Acta Energies Solaris Sinica, 2020,41(2):13-19.
[77]
Nagappan S, Devendran S, Tsai P C, et al. Metabolomics integrated with transcriptomics and proteomics:evaluation of systems reaction to nitrogen deficiency stress in microalgae[J]. Process Biochemistry, 2020,91:1-14.
[78]
Kamalanathan M, Gleadow R, Beardall. Impacts of phosphorus availability on lipid production by Chlamydomonas reinhardtii[J]. Algal Research, 2015,12:191-196.
[79]
Mandal S, Mallick N. Microalga Scenedesmus obliquus as a potential source for biodiesel production[J]. Applied Microbiology and Biotechnology, 2009,84(2):281-291.
[80]
Yao C, Jiang J, Cao X, et al. Phosphorus enhances photosynthetic storage starch production in a green microalga (Chlorophyta) Tetraselmis subcordiformis in nitrogen starvation conditions[J]. Journal of Agricultural and Food Chemistry, 2018,66(41):10777-10787.
[81]
Yang F, Xiang W, Li T, et al. Transcriptome analysis for phosphorus starvation-induced lipid accumulation in Scenedesmus sp[J]. Scientific Reports, 2018,8(1):1-11.
[82]
陈爱玲.氮,磷,硫及光对类波氏真点藻油脂积累的调控和转录组学分析[D]. 广州:暨南大学, 2018. Chen A L, The regulation and transcriptomics analysis of oil accumulation by nitrogen, phosphorus, sulfur and light on Euphorbia bodhii-like algae[D]. Guangzhou:Jinan University, 2018.
[83]
Cheirsilp B, Torpee S. Enhanced growth and lipid production of microalgae under mixotrophic culture condition:effect of light intensity, glucose concentration and fed-batch cultivation[J]. Bioresource Technology, 2012,110:510-516.
[84]
Wahidin S, Idris A, Shaleh S R. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp.[J]. Bioresource Technology, 2013,129:7-11.
[85]
Das P, Lei W, Aziz S S, et a1. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light[J]. Bioresource Technology, 2011,102(4):3883-3887.
[86]
Alboresi A, Perin G, Vitulo N, et al. Light remodels lipid biosynthesis in Nannochloropsis gaditana by modulating carbon partitioning between organelles[J]. Plant Physiology, 2016,171(4):2468-2482.
[87]
Wang B, Jia J. photoprotection mechanisms of Nannochloropsis oceanica in response to light stress[J]. Algal Research, 2020,46:101784.
[88]
Ahlgren G. Temperature functions in biology and their application to algal growth constants[J]. Oikos, 1987,49(2):177-190.
[89]
Salvucci M E, Crafts-Brandner S J. Inhibition of photosynthesis by heat stress:the activation state of Rubisco as a limiting factor in photosynthesis[J]. physiologia plantarum, 2004,120(2):179-186.
[90]
Staehelin L A. Chloroplast structure:from chlorophyll granules to supra-molecular architecture of thylakoid membranes[J]. Photosynthesis Research, 2003,76(1-3):185-196.
[91]
Richmond A E, Soeder C J. Microalgaculture[J]. Critical Reviews in Biotechnology, 1986,4(3):369-438.
[92]
Shin H S, Hong S J, Yoo C, et al. Genome-wide transcriptome analysis revealed organelle specific responses to temperature variations in algae[J]. Scientific Reports, 2016,6(1):1-11.
[93]
Cao J Y, Kong Z Y, Ye M W, et al. Comprehensive comparable study of metabolomic and transcriptomic profiling of Isochrysis galbana exposed to high temperature, an important diet microalgal species[J]. Aquaculture, 2020,521:735034.
[94]
Mandotra S K, Kumar P, Suseela M R, et al. Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphorus, pH and light intensities[J]. Bioresource Technology, 2016,201:222-229.
[95]
白丽菊,侯博,江波,等.化学吸收剂强化微藻固碳研究进展[J]. 化工进展, 2020,39(2):111-119. Bai L J, Hou B, Jiang B, et al. Research progress of CO2 fixation by chemical absorbents enhanced microalgae[J]. Chemical Industry and Engineering Progress, 2020,39(2):111-119.
[96]
Azov Y, Goldman J C. Free ammonia inhibition of algal photosynthesis in intensive cultures[J]. Applied and Environmental Microbiology, 1982,43(4):735-739.
[97]
Nguyen B T, Rittmann B E. Predicting dissolved inorganic carbon in photoautotrophic microalgae culture via the nitrogen source[J]. Environmental Science & Technology, 2015,49(16):9826-9831.
[98]
Bartley M L, Boeing W J, Dungan B N, et al. PH effects on growth and lipid accumulation of the biofuel microalgae Nannochloropsis salina and invading organisms[J]. Journal of Applied Phycology, 2014,26(3):1431-1437.
[99]
Guckert J B, Cooksey K E. Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell cycle Inhibition[J]. Journal of Phycology, 1990,26(1):72-79.
[100]
巩东辉,乔辰,王志忠,等.影响螺旋藻抗御强光能力的主要环境因子研究[J]. 内蒙古科技大学学报, 2007,26(4):349-354. Gong D H, Qiao C, Wang Z Z, et al. Research on main environmental factors affecting Spirulina's anti-glare ability[J]. Journal of Inner Mongolia University of Science and Technology, 2007,26(4):349-354.
[101]
欧阳叶新,施定基,黄开耀,等.鱼腥藻7120响应NaCl胁迫的光合特性[J]. 水生生物学报, 2003,27(1):74-80. Ouyang Y X, Shi D G, Huang K Y, et al. photosynthetic characteristics of Anabaena 7120 in response to NaCl stress[J]. Acta Hydrobiology, 2003,27(1):74-80.
[102]
Miyasaka H, Ikeda K. Osmoregulating mechanism of the halotolerant green alga Chlamydomonas, strain HS-5[J]. Plant Science, 1997, 27(1):91-96.
[103]
Ben-Amotz A, Avron M. The role of glycerol in the osmotic regulation of the halophilic alga Dunaliella parva[J]. Plant Physiology, 1973,51(5):875-878.
[104]
Kaplan D, Richmond A E, Dubinsky Z, et al. CRC Handbook of Microalgal Mass Culture[J]. 1986.
[105]
Ho S H, Nakanishi A, Kato Y,et al. Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4[J].Scientific Reports, 2017,7:45471.
[106]
Chen H, Lu Y, Jiang J G. Comparative analysis on the key enzymes of the glycerol cycle metabolic pathway in Dunaliella salina under osmotic stresses[J]. PLoS One, 2012,7(6):e37578.
[107]
Driver T, Trivedi D K, McIntosh O A, et al. Two glycerol-3-phosphate dehydrogenases from Chlamydomonas have distinct roles in lipid metabolism[J]. Plant Physiology, 2017,174(4):2083-2097.
[108]
王慧岭,刘敏胜.微藻生物能源产业化若干问题的思考[J]. 生物产业技术, 2016,(3):14-16. Wang H L, Liu M S. Thinking on several issues of industrialization of microalgae bioenergy[J]. Bioindustry Technology, 2016,(3):14-16.
[109]
Roleda M Y, Slocombe S P, Leakey R J G, et al. Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy[J]. Bioresource Technology, 2013,129:439-449.
[110]
Pal D, Khozin-Goldberg I, Cohen Z, et al. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp[J]. Applied Microbiology and Biotechnology, 2011,90(4):1429-1441.