Study on the concentration variation and impact factors of CH4 in Akedala atmospheric background station
ZHAO Zhu-jun1,2,3, LU Zhong-qi1,2, HE Qing2,3, WANG Jian-lin3,4
1. College of Resources & Environmental Sciences, Xinjiang University, Urumqi 830046, China; 2. Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China; 3. Field Scientific Experiment Base of Akedala Atmospheric Background, China Meteorological Administration, Altay 836500, China; 4. Akedala Atmospheric Background Station, Altay 836500, China
Abstract:The observation data of CH4 concentrations and meteorological elements of Akedala station from 2009 to 2019 were used to analyze the CH4 concentration changes and influencing factors using random forest model and backward trajectory model with clustering analysis methods. The results showed that the CH4 concentrations at Akedala station increased significantly during the recent 10yaers with an annual average concentration of (1934.30±30.94)×10-9 and an average growth rate of 0.45%. The seasonal changes showed high CH4 in autumn and winter and low CH4 in spring and summer, with winter (1973.77±36.72)×10-9>autumn (1935.86±36.14)×10-9>spring (1922.36±26.38)×10-9>summer (1920.92±29.82)×10-9. The CH4 concentration change at Akedala station is influenced by a combination of meteorological factors, with air temperature and relative humidity playing the dominant roles. Backward trajectory clustering analysis based on HYSPLIT model driven by GDAS meteorological data reveals that air mass movement to Akedala station is mostly along the northwestern path paralleling to the Valley of Erchez River, and passing through Alashankou and Old Wind Pass. In addition, the low movement speed in autumn and winter as well as its high speed in spring and summer could affect the seasonal variation of CH4 concentrations.
赵竹君, 陆忠奇, 何清, 王建林. 阿克达拉大气本底站甲烷浓度特征及影响因素[J]. 中国环境科学, 2022, 42(2): 519-527.
ZHAO Zhu-jun, LU Zhong-qi, HE Qing, WANG Jian-lin. Study on the concentration variation and impact factors of CH4 in Akedala atmospheric background station. CHINA ENVIRONMENTAL SCIENCECE, 2022, 42(2): 519-527.
人行国际司青年课题组.主要国家实现"碳中和"路线图[N]. 第一财经日报, 2021-02-04(A11). PBOC International Division Youth Project Group. Road Map for major countries to achieve carbon neutrality[N]. China Business News, 2021-02-04(A11).
[4]
Lioubimtseva E, Henebry G M. Climate and environmental change in arid Central Asia:Impacts, vulnerability, and adaptations[J]. Journal of Arid Environments, 2009,73(11):963-977.
[5]
Fang S X, Tans P, Dong F, et al. Characteristics of atmospheric CO2 and CH4 at the Shangdianzi regional background station in China[J]. Atmospheric Environment, 2016,131:1-8.
[6]
Fang S X, Tans P, Yao B, et al. Study of atmospheric CO2 and CH4 at Longfengshan WMO/GAW regional station:the variations, trends, inflfluence of local sources/sinks, and transport[J]. China Earth Sci., 2017,60:1886-1895.
[7]
张世勍,曹闪闪,胡礼庭,等.亚洲季风区大气CH4浓度时空变化特征影响因素[J]. 应用生态学报, 2021,32(4):1406-1416. Chang S Q, Chao S, Hu L T, et al. Spatio-temporal variation characteristics and influencing factors of atmospheric CH4 concentration in Asian monsoon region[J]. Journal of Applied Ecology, 2021,32(4):1406-1416.
[8]
Xu W Y, Xu X B, Lin M Y, et al. Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China-Part 2:The roles of anthropogenic emissions and climate variability[J]. Atmospheric Chemistry and Physics, 2018,18(2):773-798.
[9]
冯先林,钱康妮,博尔楠,等.阿克达拉大气本底站CO质量浓度变化特征分析[J]. 陕西气象, 2021,1:44-49. Feng X L, Qian K N, Bo E N, et al. Characterization of CO mass concentration variation at Akedala atmospheric background station[J]. Shaanxi Meteorology, 2021,1:44-49.
[10]
徐晓斌,汤洁.新建大气本底站候选站址科学论证[J]. Annual Report of CAMS, 2004,00:34-35. Xu X B, Tang J. Scientific demonstration of candidate site of new atmospheric background station[J]. Annual Report of CAMS, 2004,00:34-35.
[11]
Sun J, Zhong G, Huang K, et al. Banzhaf random forests:cooperative game theory based random forests with consistency[J]. Neural Networks, 2018,106:20-29.
[12]
Hong Y, Chen S, Liu Y, et al. Combination of fractional order derivative and memory-based learning algorithm to improve the estimation accuracy of soil organic matter by visible and near-infrared spectroscopy[J]. CATENA, 2019,174:104-116.
[13]
Wang Y Q, Zhang X Y, Draxler R R. TrajStat:GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data[J]. Environmental Modeling and Software, 2009,24(8):938-939.
[14]
熊健,冯徽徽,丁莹,等.长沙地区PM2.5传输路径和潜在源区时空分析[J]. 环境科学学报, 2020,41(9):3663-3672. Xoing J, Feng H H, Ding Y, et al. Spatial and temporal analysis of PM2.5 transmission paths and potential source areas in Changsha area[J]. Acta Scientiae Circumstantiae, 2020,41(9):3663-3672.
[15]
Hiep Nguyen Duc, Kristina Shingles, Stephen, et al. Spatial-Temporal Pattern of Black Carbon (BC) Emission from Biomass Burning and Anthropogenic Sources in New South Wales and the Greater Metropolitan Region of Sydney, Australia[J]. Atmosphere, 2020, 11(6):570.
[16]
符传博,丹利,佟金鹤.2017年秋季海口市一次持续空气污染过程特征及成因分析[J]. 环境化学, 2021,40(4):1048-1058. Fu C B, Dan L, Tong J H. Characteristics and causes analysis of a persistent air pollution process in Haikou City in autumn 2017[J]. Environmental Chemistry, 2021,40(4):1048-1058.
[17]
万占鑫,肖万有,王窈英,等.河西走廊西部一次暴雨过程的水汽特征分析[J]. 内蒙古气象, 2021,2:14-19. Wang Z X, Xao W Y, Wang Y Y, et al. Analysis of water vapor characteristics of a heavy rainfall process in western Hexi Corridor[J]. Inner Mongolia Meteorology, 2021,2:14-19.
[18]
Oke T R. Boundary layer climates[Z]. Routledge, 2002.
[19]
Danuta Stępalska, Dorota Myszkowska, Katarzyna Piotrowicz, et al. High Ambrosia pollen concentrations in Poland respecting the long distance transport (LDT)[J]. Science of the Total Environment, 2020,736(C):1-14.
[20]
Zhang Yong, Jin Jun Li, Yan Peng, et al. Long-term variations of major atmospheric compositions observed at the background stations in three key areas of China[J]. Advances in Climate Change Research, 2020,11:370-380.
[21]
Wang H Q, Ma J M, Shen Y J, et al. Assessment of ozone variations and meteorological influences at a rural site in Northern Xinjiang[J]. Bulletin of Environmental Contamination and Toxicology, 2015,94:240-246.
[22]
张定媛,廖宏.大气甲烷的源和汇及其浓度的观测模拟研究进展[J]. 气象科技进展, 2015,5(1):40-47. Zhang D Y, Liao H. Advances in the research on sources and sinks of CH4 and observations and simulations of CH4 concentrations[J]. Advances in Meteorological Science and Technology, 2015,5(1):40-47.
[23]
张芳,周凌晞,许林.瓦里关大气CH4浓度变化及其潜在源区分析.中国科学:地球科学, 2013,43(4):536-546. Zhang F, Zhou L X, Xu L. Temporal variation of atmospheric CH4 and the potential source regions at Waliguan, China[J]. Science China:Earth Sciences, 2013,43(4):536-546.
[24]
张芳.大气CO2, CH4和CO浓度资料再分析及源汇研究[D]. 北京:中国气象科学研究院, 2011. Zhang F. Reanalysis and Evaluation of Atmospheric CO2, CH4 and CO[D]. Beijing:Chinese Academy of Meteorological Sciences, 2011.
[25]
浦静姣,徐宏辉,顾骏强,等.气象因素对长三角背景地区甲烷浓度的影响分析[J]. 环境科学, 2013,34(3):835-841. Pu J J, Xu H H, Gu J Q, et al. Influence of meteorological factors on methane concentration in background area of Yangtze River Delta[J]. Environmental Science, 2013,34(3):835-841.
[26]
李淑婷,李霞,钟玉婷,等.2017~2018年阿克达拉O3浓度特征及气象因子分析[J]. 沙漠与绿洲气象, 2020,14(1):115-122. Li S T, Li X, Zhong Y T, et al. O3 concentration characteristics and analysis of meteorological factors in Akdala, 2017~2018[J]. Desert and Oasis Meteorology, 2020,14(1):115-122.
[27]
吴海宝.大气中甲烷的光化学反应及其环境效应[J]. 环境污染与防治, 1989,4:13-15. Wu H B. Photochemical reactions of CH4 in the atmosphere and its environmental effects[J]. Prevention and Control of Environmental Pollution, 1989,4:13-15.
[28]
Li H L, He Q, Liu X C. Identification of Long-Range Transport Pathways and Potential Source Regions of PM2.5 and PM10 at Akedala Station, Central Asia[J]. Atmosphere, 2020,11:1183-1200.
[29]
赵权威,何清,王慧琴,等.阿克达拉大气本底站NO2输送路径及潜在源分析[J]. 环境科学学报, 2021,41(3):874-885. Zhao Q W, He Q, Wang H Q, et al. Identification of transport pathways and potential source areas of NO2 in Akedala[J]. Acta Scientiae Circumstantiae, 2021,41(3):874-885.
[30]
Wang H Q, He Q, Tao L, et al. Characteristics and source of black carbon aerosols at Akedala station, Central Asia[J]. Meteorol. Atmos. Phys., 2012,118:189-197.
[31]
冯冬霞,高晓清,周亚,等.青藏高原大气甲烷浓度时空分布变化特征[J]. 气候与环境研究, 2017,22(3):346-354. Feng D X, Gao X Q, Zhou Y, et al. Characteristics of spatial−temporal variation of atmospheric methane over the Tibetan Plateau[J]. Climatic and Environmental, 2017,22(3):346-354.
[32]
任信荣,王会祥,邵可声,等.北京市大气OH自由基测量结果及其特征[J]. 环境科学, 2002,23(4):24-27. Ren X R, Wang H X, Shao K S, et al. Measurement results and characteristics of Oh radicals in the atmosphere of Beijing[J]. Environmental Science, 2002,23(4):24-27.
[33]
陈碧辉,李跃清,何光碧,等.温室气体源汇及其对气候影响的研究进展[J]. 成都信息工程学院学报, 2006,21(1):123-127. Chen B H, Li Yue Q, He G B, et al. Greenhouse gas sources and sinks and their impacts on climate[J]. Journal of Chengdu Institute of Information Engineering, 2006,21(1):123-127.
[34]
张广兴,崔彩霞,赵元茂,等.阿克达拉大气本底站气流轨迹模拟研究[J]. 中国沙漠, 2008,1(28):154-160. Zhang G X, Cui C X, Zhao Y M, et al. A numerical simulation study of the air trajectory at the Akedala atmospheric background station[J]. China Desert, 2008,1(28):154-160.
[35]
杨静,何静,祝婕,等.基于CALPUFF的"乌-昌-石冶区域燃煤污染物扩散模拟[J]. 科学技术与工程, 2020,20(3):1263-1270. YangJ, He J, Zhu J, et al. CALPUFF-based "simulation of pollutant diffusion from coal combustion in wujuanchang-shiye region[J]. Science Technology and Engineering, 2020,20(3):1263-1270.
[36]
徐宏辉,浦静姣,顾骏强,等.临安区域本底站大气甲烷浓度变化特征[J]. 长江流域资源与环境, 2012,21(2):204-208. Xu H H, Pu J J, Gu J Q, et al. Variation characteristics of atmospheric methane concentration at background stations in the Lin'an City region[J]. Resources and environment of the Yangtze River Basin, 2012, 21(2):204-208.
[37]
Petracchini F, Paciucci L, Vichi F, et al. Gaseous pollutants in the city of Urumqi, Xinjiang:Spatial and temporal trends, sources and implications[J]. Atmospheric Pollution Research, 2016,7(5):925-934.