MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
Abstract:The CO2 reduction induced by material in the situation of fly ash replacement is calculated by the guideline of Greenhouse Gas Emissions of Chinese Cement Enterprises. Meanwhile, the CO2 reduction induced by energy employment also defined by the methods from Intergovernmental Panel on Climate Change. The results show that considering industrial symbiosis with coal-fired power plants, 92.676kg/t cement of CO2 are reduced. It is demonstrated that the replacement of clinker with fly ash is the main part leading to CO2 reduction in China's cement industry. When combined with the replacement of raw materials, the maximum CO2 reduction per ton of cement can be up to 373.303kg. In the application stage, the carbonization effect of concrete formed by fly ash and Portland cement has increased, and one ton of cement will adsorb 192.015kg of CO2 by 2050. In the context of fly ash replacement, the emission reduction caused by the change of waste heat generation and the clean electricity employment with different proportion are forecasted. It is found that the measure can also effectively promote the achievement of carbon peak and neutrality goals.
肖静, 梁学敏, 张逸畅, 张岳玲. 中国水泥生命周期粉煤灰替代的CO2减排研究[J]. 中国环境科学, 2022, 42(4): 1934-1944.
XIAO Jing, LIANG Xue-min, ZHANG Yi-chang, ZHANG Yue-ling. Study on CO2 reduction of cement with fly ash substitute from the perspective of life cycle in China. CHINA ENVIRONMENTAL SCIENCECE, 2022, 42(4): 1934-1944.
Liu J, Tong D, Zheng Y, et al. Carbon and air pollutant emissions from China's cement industry 1990-2015:trends, evolution of technologies, and drivers[J]. Atmospheric chemistry and physics, 2021,21(3):1627- 1647.
[2]
Jamora J B, Gudia S E L, Go A W, et al. Potential CO2 reduction and cost evaluation in use and transport of coal ash as cement replacement:A case in the Philippines[J]. Waste Management, 2020,103:137-145.
[3]
Wen Z, Chen M, Meng F. Evaluation of energy saving potential in China's cement industry using the Asian-Pacific Integrated Model and the technology promotion policy analysis[J]. Energy Polic, 2015,77:227-237.
[4]
Wei J, Cen K. Empirical assessing cement CO2 emissions based on China's economic and social development during 2001~2030[J]. The Science of the total environment, 2019,653:200-211.
[5]
Kayali O, Sharfuddin Ahmed M. Assessment of high volume replacement fly ash concrete-Concept of performance index[J]. Construction and Building Materials, 2013,39:71-76.
[6]
Hussain S, Bhunia D, Singh S B. Comparative study of accelerated carbonation of plain cement and fly-ash concrete[J]. Journal of Building Engineering, 2017,10:26-31.
[7]
Guo R, Wang J, Bing L, et al. Global CO2 uptake by cement from 1930 to 2019[J]. Earth System Science Data, 2021,13(4):1791-1805.
[8]
刘辉敏.水泥生产技术基础[M]. 北京:化学工业出版社, 2016. Liu M H. Fundamentals of cement production technology[J]. Beijing:Chemical Industry Press, 2016.
[9]
章玉容.粉煤灰混凝土生命周期环境影响综合评价[D]. 北京:北京交通大学, 2016. Zhang Y R. Comprehensive assessment of life cycle environmental impact of fly ash concrete[D]. Beijing:Beijing Jiaotong University, 2016.
[10]
中华人民共和国生态环境部.关于做好2018年度碳排放报告与核查及排放监测计划制定工作的通知[EB/OL]. http://www.mee.gov. cn/ywgz/ydqhbh/wsqtkz/201904/t20190419_700400.shtml2019-04-19/2019-07-10. Ministry of Ecology and Environment of the People's Republic of China.The Circular on reporting and verifying carbon emissions in 2018and formulating emission monitoring plans[EB/OL]. http://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201904/t20190419_700400.shtml2019-04-19/2019-07-10.
[11]
杨昆,王永胜,刘翠玲.山西省重点行业碳排放情况的LMDI分析和聚类评价[J]. 低碳世界, 2016,6(10):3-4. Yang K, Wang Y S, Liu C L.LMDI Analysis and cluster evaluation of Carbon Emission of Key Industries in Shanxi Province[J]. Low carbon world, 2016,6(10):3-4.
[12]
Shen W, Cao L, Li Q, et al. Quantifying CO2 emissions from China's cement industry[J]. Renewable and Sustainable Energy Reviews, 2015,50:1004-1012.
[13]
Yin Q, Du W, Cheng L. Optimization design of waste heat power generation systems for cement plants based on the thermal resistances analyses[J]. International Journal of Heat and Mass Transfer, 2018, 118:1190-1204.
[14]
Rad E A, Mohammadi S. Energetic and exergetic optimized Rankine cycle for waste heat recovery in a cement factory[J]. Applied Thermal Engineering, 2018,132:410-422.
[15]
彭菊生.低温余热朗肯循环发电系统的设计研究[J]. 低温工程, 2020,42(6):69-73. Peng J S. Design and research of low temperature waste heat rankine cycle power generation system[J]. Cryogenic Engineering, 2020,42(6):69-73.
[16]
陈王曦.焦炉烟气余热回收发电技术分析[J]. 节能, 2020,39(7):91-93. Chen W X. Power generation technology analysis of coke oven flue gas waste heat recovery[J]. Energy saving, 2020,39(7):91-93.
[17]
中国工程院.能源专业知识服务系统[DB/OL]. http://2018.energy. ckcest.cn/home2021-04-21. Chinese Academy of Engineering. Professional knowledge service for energy[DB/OL]. http://2018.energy.ckcest.cn/home, 2021-04-21.
[18]
姜睿,王洪涛.中国水泥工业的生命周期评价[J]. 化学工程与装备, 2010,39(4):183-187. Jiang R, Wang H T. Life cycle evaluation of cement industry in China[J]. Chemical engineering and equipment, 2010,39(4):183-187.
[19]
Md U H, Chi S P, Irene M C L, et al. Comparative LCA on using waste materials in the cement industry:A Hong Kong case study[J]. Resources, Conservation & Recycling, 2017,120:199-208.
[20]
Kayali O, Ahmed M S. Assessment of high volume replacement fly ash concrete-Concept of performance index[J]. Construction and Building Materials, 2013,39(SI):71-76.
[21]
水泥网.扩大销售半径,降低运输成本,水泥行业或将迎来变革[EB/OL]. https://www.ccement.com/news/content/54619311244965. html2019-04-08. Cement. Expand sales radius, reduce transportation costs, cement industry or will usher in change[EB/OL]. https://www.ccement.com/news/content/54619311244965.html2019-04-08.
[22]
李春峰.安徽淮南市粉煤灰现状及利用分析[J]. 广东化工, 2016, 43(13):150-151. Li C F. Status and utilization analysis of fly ash in huainan City, Anhui Province[J]. Guangdong Chemical Industry, 2016,43(13):150-151.
[23]
Zheng C, Zhang H, Cai X, et al. Characteristics of CO2 and atmospheric pollutant emissions from China's cement industry:A life-cycle perspective[J]. Journal of cleaner production, 2021,282.
[24]
郑大轩,李洁文,郭文彪.粉煤灰品质及掺量对混凝土性能影响试验研究[J]. 当代化工, 2021,50(2):262-265. Zheng D X, Li J W, Guo W B. Experimental study on the effect of fly ash quality and dosage on concrete properties[J]. Contemporary Chemical Industry, 2021,50(2):262-265.
[25]
施荣.建筑材料[M]. 重庆:重庆大学出版社, 2016:292. Shi R. Building materials[M]. Chongqing:Chongqing University Press, 2016:292.
[26]
陈三姗,陈峰.粉煤灰对水泥土强度及固化过程的影响[J]. 福建工程学院学报, 2021,19(1):61-67. Chen S S, Chen F. Effect of fly ash on strength and curing process of soil-cement[J]. Journal of Fujian Institute of Technology, 2021, 19(1):61-67.
[27]
郑宇.粉煤灰体系粒度分布特征的统计分析[J]. 四川建材, 2014,40(3):5-7. Zheng Y. Statistical analysis of particle size distribution characteristics of fly ash system[J]. Sichuan Building Materials, 2014,40(3):5-7.
[28]
张文.水泥粉磨系统能源消耗及节能分析[J]. 建材技术与应用, 2021,42(2):11-13. Zhang W. Energy consumption and energy saving analysis of cement grinding system[J]. Technology and Application of Building Materials, 201,42(2):11-13.
[29]
天津水泥工业设计研究院有限公司.立磨用于水泥终粉磨[EB/OL]. https://www.docin.com/p-275455623.html2011-10-19. Tianjin Cement Industry Design and Research Institute Co. LTD. Vertical mill is used for cement final grinding[EB/OL]. https://www.docin.com/p-275455623.html2011-10-19.
[30]
俞海勇,杨辉,张贺,等.水泥生命周期碳排放研究[J]. 四川建材, 2017,43(1):1-3. Yu H Y, Yang H, Zhang H, et al. Sichuan building materials, 2017,43(1):1-3.
[31]
Chen L, Xu L, Cai Y, et al. Spatiotemporal patterns of industrial carbon emissions at the city level[J]. Resources, conservation and recycling, 2021,169:105499.
[32]
张宇,段华波,张宁.深圳市建筑水泥流量-存量分析及环境影响评估[J]. 中国环境科学, 2021,41(1):482-489. Zhang Y, Duan H B, Zhang N. Analysis of cement flow and stock of urban buildings and its environmental impact assessment in Shenzhen City[J]. China Environmental Science, 2021,41(1):482-489.
[33]
魏云梅,姚瑞轩,陈爽,等.生活垃圾焚烧飞灰加速碳酸化深度除氯与水洗除氯对比研究[J]. 中国环境科学, 2021,41(9):4184-4192. Wei Y M, Yao R X, Chen S, et al. Removal of chloride from MSWI fly ash:a comparison of accelerated carbonation and water flushing[J]. China Environmental Science, 201,41(9):4184-4192.
[34]
张扬,牛荻涛,李盛斌.粉煤灰混凝土碳化试验研究[J]. 科学技术与工程, 2017,17(27):275-278. Zhang Y, Niu D T, Li S B. Research on carbonation of fly ash concrete[J]. Science technology and engineering, 2017,17(27):275- 278.
[35]
曹艺严,陈济,刘秉祺,等.电力增长零碳化(2020~2030):中国实现碳中和的必经之路[R]. 北京:落基山研究所, 2021. Cao Y Y, Chen J, Liu B Q, et al. Zero carbon power growth (2020~2030):the only way to achieve carbon neutrality in China[R]. Beijing:Rocky Mountain Institute, 2021.
[36]
国家发展和改革委员会能源研究所.中国2050高比例可再生能源发展情景暨途径研究[R]. 北京:国家发展和改革委员会能源研究所, 2015. Energy Research Institute of National Development and Reform Commission. Scenarios and approaches for China's 2050 high proportion of renewable energy development[R]. Beijing:Energy Research Institute of National Development and Reform Commission, 2015.
[37]
Haldorsen H H, Leach P. Energy 360:Invited perspective:The outlook for energy:A view to 2040[J]. Journal of Petroleum Technology, 2015,67(4):14-19.
[38]
Jiang K J, He C M, Jiang W Y, et al. Transition of the Chinese economy in the face of deep greenhouse gas emissions cuts in the future[J]. Asian Economic Policy Review, 2021,16(1):142-162.
[39]
何建坤.全球气候治理新机制与中国经济的低碳转型[J]. 武汉大学学报(哲学社会科学版), 2016,69(4):5-12. He J k. New mechanism of global climate governance and the low-carbon transition of China's economy[J]. Journal of Wuhan University (Philosophy and Social Sciences), 2016,69(4):5-12.
[40]
卢晗,郑鑫,李薇,等.燃煤电厂脱硫技术及超低排放改造费效分析[J]. 环境工程, 2018,36(1):97-102. Lu H, Zheng X, Li W, et al. Desulfurization technology and efficiency analysis of ultra-low emission retrofitting cost for coal- fired power plants[J]. Environmental engineering, 2018,36(1):97-102.
[41]
刘家利,郭孟狮,李炎.135MW机组锅炉掺烧半焦试验及经济性分析[J]. 洁净煤技术, 2017,23(2):86-91. Liu J L, Guo M S, Li Y. Experiment and economic analysis of mixing coke in boiler of 135MW unit[J]. Clean coal technology, 2017,23(2):86-91.
[42]
张珊珊,历长云,潘跃武.铜包铁粉的应用及制备[J]. 粉末冶金技术, 2020,38(6):465-474. Zhang S S, Li C Y, Pan Y W. Application and preparation of copper coated iron powder[J]. Powder metallurgy technology, 2020,38(6):465-474.
[43]
水泥网.国内部分地区11月份最新粉煤灰价格[EB/OL]. https://www.ccement.com/news/content/1148994.html,2010-11-01. Cement.The domestic parts of the latest price of fly ash in November[EB/OL]. https://www.ccement.com/news/content/1148994.html 2010-11-01.
[44]
梁爱光.煤炭价格持续高位震荡非市场因素暗流扰动[EB/OL]. https://www.ccement.com/news/content/10923125636975003.html2021-09-06. Liang A G. The price of coal continued high and volatile non-market factors undercurrent disturbance[EB/OL]. https://www.ccement.com/news/content/10923125636975003.html2021-09-06.
[45]
刘思佳,张超,周树鹏.我国电价的国际比较分析[N]. 国家电网报, 2021-03-23(8). Liu S J, Zhang C, Zhou S P. International comparative analysis of China's electricity price[N]. State Grid News, 2021-03-23(8).
[46]
货拉拉.货拉拉基本费用,货拉拉收费标准[DB/OL]. https://www. huolala.cn/price.html2020-09-15. Huolala. Basic cost of goods and labrador, goods and labrador charging standard[DB/OL]. https://www.huolala.cn/price.html2020- 09-15.