The current status and characteristics of variations in forest BVOCs emissions in Beijing
ZHANG Qiang1,2, LI Ling-jun1,2, ZHAO Wen-hui1,2, LIU Bao-xian1,2,3, LU Hai-feng1,2, QIN Li-huan1,2, CHEN Yun-ru1,2, LI Qi1,2
1. Beijing Municipal Ecological and Environment Monitoring Center, Beijing 100048, China; 2. Beijing Key Laboratory of Airborne Particulate Matter Monitoring Technology, Beijing 100048, China; 3. School of Environment, Tsinghua University, Beijing 100084, China
Abstract:Accurate estimation of biogenic volatile organic compounds (BVOCs) emissions is necessary for developing effective air pollution control measures. To understand the current status and characteristics of variations in forest BVOCs emissions in Beijing, historical BVOCs emission inventories for the period from 2000 to 2020 were developed based on the volume data of forest resources survey, hourly meteorological data and light-temperature model. The results show that the forest BVOCs emissions in 2020 were 39.57×109g C, of which isoprene, monoterpene and other VOCs accounted for 72.19%, 17.48% and 10.32%, respectively. Broadleaf trees emitted the largest amount of isoprene and total BVOC emissions, while conifers made the largest monoterpene emission. Results show that Beijing’s annual forest BVOCs emissions had increased from 20.30×109g C in 2000 to 39.57×109g Cin 2020, with an annual average increase rate of 4.75%. Isoprene, monoterpene and other VOCs accounted for 64.54%, 22.28% and 13.16% of the total increment, respectively. In the past 20 years, the proportion of isoprene decreased, while the proportion of monoterpene and OVOCs increased. The contribution to the BVOCs emissions tended to decrease for poplar while to increase significantly for quercus and other broadleaf trees, indicating that the new afforestation in Beijing has led to a higher species diversity. From 2000 to 2020, the ozone formation potential of BVOCs had increased from 181.76×109 to 331.07×109g C, of which isoprene was the main contributor, accounting for 92.70%. The secondary organic aerosol formation potential of BVOCs had increased from 1.11×109 to 2.65×109g C, and the contribution of monoterpene and isoprene was 75.40% and 24.60%, respectively. Poplar exhibits the highest ozone formation potential, and Pinus tabulaetormis shows the highest secondary organic aerosol formation potential. The forest BVOCs emissions made relatively higher contribution to ozone pollution in summer. Therefore, tree species optimization should be considered to mitigate BVOCs emissions.
张蔷, 李令军, 赵文慧, 刘保献, 鹿海峰, 秦丽欢, 陈韵如, 李琪. 北京森林BVOCs排放现状及动态变化特征分析[J]. 中国环境科学, 2022, 42(9): 3991-4000.
ZHANG Qiang, LI Ling-jun, ZHAO Wen-hui, LIU Bao-xian, LU Hai-feng, QIN Li-huan, CHEN Yun-ru, LI Qi. The current status and characteristics of variations in forest BVOCs emissions in Beijing. CHINA ENVIRONMENTAL SCIENCECE, 2022, 42(9): 3991-4000.
Li L Y, Yang W Z, Xie S D, et al. Estimations and uncertainty of biogenic volatile organic compound emission inventory in China for 2008~2018 [J]. Science of the Total Environment, 2020,733:139301.
[2]
Guenther A, Hewitt C, Erickson D, et al. A global-model of natural volatile organic-compound emission [J]. Journal of Geophysical Research Atmospheres, 1995,100(5):8873-8892.
[3]
Fehsenfeld F, Calvert J, Fall R, et al. Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry [J]. Global Biogeochemical Cycles, 1992,6:389-430.
[4]
Guenther A, Karl T, Harley P, et al. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature) [J]. Atmospheric Chemistry and Physics, 2006,6:3181-3210.
[5]
Graedel T E, Bates T S, Bouwman A F, et al. A compilation of inventories of emissions to the atmosphere [J]. Global Biogeochemical Cycles, 1993,7:1–26.
[6]
Klinger L F, Li Q J, Guenther A B, et al. Assessment of volatile organic compound emissions from ecosystems of China [J]. Journal of Geophysical Research, 2002,107(D21):1-21.
[7]
Li L Y, Chen Y, Xie S D. Spatio-temporal variation of biogenic volatile organic compounds emissions in China [J]. Environmental Pollution, 2013,182:157-168.
[8]
Yin L, Xu Z, Liu M, et al. Estimation of biogenic volatile organic compound (BVOC) emissions in China using WRF–CLM–MEGAN coupled model, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2019-458, 2020.
[9]
张 倩,李洪远.城市绿地对大气环境的潜在负面效应 [J]. 景观设计, 2019,18(2):4-11. Zhang Q, Li H Y. Potential negative effects of urban green space on the atmospheric environment [J]. Landscape Design, 2019,18(2):4-11.
[10]
Ren Y, Qu Z, Du Y, et al. Air quality and health effects of biogenic volatile organic compounds emissions from urban green spaces and the mitigation strategies [J]. Environmental Pollution, 2017,230:849- 861.
[11]
谢扬飏,邵 敏,陆思华,等.北京市园林绿地植被挥发性有机物排放的估算 [J]. 中国环境科学, 2007,27(4):498-502. Xie Y Y, Shao M, Lu S H, et al. The estimation of volatile organic compounds emission from landscape plants in Beijing [J]. China Environmental Science, 2007,27(4):498-502.
[12]
Xie X, Shao M, Liu Y, et al. Estimate of initial isoprene contribution to ozone formation potential in Beijing, China [J]. Atmospheric Environment, 2008,42(24):6000-6010.
[13]
Pang X, Mu Y, Zhang Y, et al. Contribution of isoprene to formaldehyde and ozone formation based on its oxidation products measurement in Beijing, China [J]. Atmospheric Environment, 2009, 43(13):2142-2147.
[14]
Mo Z, Shao M, Wang W, et al. Evaluation of biogenic isoprene emissions and their contribution to ozone formation by ground-based measurements in Beijing, China [J]. Science of the Total Environment, 2018,627:1485-1494.
[15]
井潇溪.北京市森林植物挥发性有机物排放研究 [D]. 北京:北京林业大学, 2020. Jing X X. Study on biogenic volatile organic compounds emission from forest plants in Beijing [D]. Beijing: Beijing Forestry University, 2020.
[16]
Ghirardo A, Xie J, Zheng X, et al. Urban stress-induced biogenic VOC emissions and SOA-forming potentials in Beijing [J]. Atmospheric Chemistry and Physics, 2016,16(5):2901-2920.
[17]
方精云,陈安平.中国森林植被碳库的动态变化及其意义 [J]. 植物学报, 2001,43(9):967-973. Fang J Y, Chen A P. Dynamic forest biomass carbon pools in China and their significance [J]. Bulletin of Botany, 2001,43(9):967-973.
[18]
张 莉.中国森林生态系统异戊二烯排放研究 [D]. 南京:南京气象学院, 2002. Zhang L. Isoprene emission from forest ecosystem in China [D]. Nanjing: Nanjing Institute of Meteorology, 2002.
[19]
Li L Y, Xie S D. Historical variations of biogenic volatile organic compound emission inventories in China, 1981~2003 [J]. Atmospheric Environment, 2014,95:185-196.
[20]
北京市园林绿化局.2020年森林资源情况 [EB/OL]. http://yllhj.beijing.gov.cn/zwgk/tjxx/. Beijing Municipal Forestry and Parks Bureau. Forest resources in 2020 [EB/OL]. http://yllhj.beijing.gov.cn/zwgk/tjxx/.
[21]
Guenther A, Baugh B, Brasseur G, et al. Isoprene emission estimates and uncertainties for the central African EXPRESSO study domain [J]. Journal of Geophysical Research: Atmospheres, 1999,104(D23): 30625-30639.
[22]
冯惠生.北京生态环境保护 [M]. 北京:中国环境出版集团, 2019. Feng H S. Beijing ecological and environmental protection [M]. Beijing: China Environment Publishing Group, 2019.
[23]
Benjamin M T, Winer A M. Estimating the ozone-forming potential of urban trees and shrubs [J]. Atmospheric Environment, 1998,32:53-68.
[24]
Carter W P L. Reactivity estimates for selected consumer product compounds [R]. California: Center for Environmental Research and Technology, College of Engineering, University of California, February 19,2008.
[25]
邱婉怡,刘禹含,谭照峰,等.基于中国四大城市群计算的最大增量反应活性 [J]. 科学通报, 2020,65(7):610-621. Qiu W Y, Liu Y H, Tan Z F, et al. Calculation of maximum incremental reactivity scales based on typical megacities in China [J]. Science Bulletin, 2020,65(7):610-621.
[26]
Grosjean D. In situ organic aerosol formation during a smog episode: Estimated production and chemical functionality [J]. Atmospheric Environment, Part A, General Topics, 1992,26(6):953-963.
[27]
杜吴鹏,房小怡,黄宏涛,等.北京近年地表风速和大气混合层厚度变化特征研究 [J]. 环境科学与技术, 2017,40(6):149-156. Du W P, Fang X Y, Huang H T, et al. Variation characteristics of surface wind speed and atmospheric mixing layer height in recent years in Beijing [J]. Environmental Science and Technology, 2017, 40(6):149-156.
[28]
张 莉,王效科,欧阳志云,等.中国森林生态系统的异戊二烯排放研究 [J]. 环境科学, 2003,24(1):8-15. Zhang L, Wang X K, Ooyang Z Y, et al. Estimation of isoprene emission from forest ecosystems in China [J]. Environmental Science, 2003,24(1):8-15.
[29]
张 蔷,李令军,赵文慧,等.北京森林BVOCs排放特征及对区域空气质量的影响 [J]. 中国环境科学, 2021,41(2):622-632. Zhang Q, Li L J, Zhao W H, et al. Emission characteristics of VOCs from forests and its impact on regional air quality in Beijing [J]. China Environmental Science, 2021,41(2):622-632.
[30]
Guenther A, Zimmerman P, Wildermuth M. Natural volatile organic compound emission rate estimates for U.S. woodland and landscapes [J]. Atmospheric Environment, 1994,28(6):1197-1210.
[31]
王志辉,张树宇,陆思华,等.北京地区植物VOCs排放速率的测定 [J]. 环境科学, 2003,24(2):7-12. Wang Z H, Zhang S Y, Lu S H, et al. Screenings of 23plant species in Beijing for volatile organic compound emissions [J]. Environmental Science, 2003,24(2):7-12.
[32]
赵 静,白郁华,王志辉,等.我国植物VOCs排放速率的研究 [J]. 中国环境科学, 2004,24(6):654-657. Zhao J, Bai Y H, Wang Z H, et al. Studies on the emission rates of plants VOCs in China [J]. China Environmental Science, 2004,24(6): 654-657.
[33]
赵美萍,邵 敏,白郁华,等.我国几种典型树种非甲烷烃类的排放特征 [J]. 环境化学, 1996,15(1):69-75. Zhao M P, Shao M, Bai Y H, et al. Study on NMHC emission characteristics of several typical trees in China [J]. Environmental Chemistry, 1996,15(1):69-75.
[34]
陈 颖,李德文,史 奕,等.沈阳地区典型绿化树种生物源挥发性有机物的排放速率 [J]. 东北林业大学学报, 2009,37(3):49-51. Chen Y, Li D W, Shi Y, et al. Emission rate of biogenic volatile organic compounds from urban trees in Shenyang, China [J]. Journal of Northeast Forestry University, 2009,37(3):49-51.
[35]
吕 迪.陕西森林植被BVOCs排放特征研究 [D]. 杨凌:西北农林科技大学, 2016. Yang D. Estimation of BVOCs emission from forests in Shaanxi [D]. Yangling: Northwest A & F University, 2016.
[36]
樊 冲.河北省森林植物源挥发性有机物排放量研究 [D]. 北京:北京林业大学, 2019. Fan C. Study on biogenic volatile organic compounds emission from forest plants in Hebei province [D]. Beijing: Beijing Forestry University, 2019.
[37]
桂 丽.西安市挥发性有机物排放量估算及其臭氧生成潜势研究 [D]. 西安:西北大学, 2019. Gui L. Estimation of volatile organic organic compounds emissions and ozone formation potential in Xi’an city [D]. Xi’an: Northwest University, 2019.
[38]
Tani A, Kawawata Y. Isoprene emission from the major native Quercus spp. in Japan [J]. Atmospheric Environment, 2008,42(19): 4540-4550.
[39]
Yaman B, Aydin Y M, Koca H, et al. Biogenic volatile organic compound (BVOC) emissions from various endemic tree species in Turkey [J]. Aerosol and Air Quality Research, 2015,15(1):341-356.
[40]
张福珠,苗 鸿,鲁 纯.落叶阔叶林释放异戊二烯的研究 [J]. 环境科学, 1994,19(1):1-5. Zhang F Z, Miao H, Lu C. Emission of isoprene from deciduous forest [J]. Environmental Science, 1994,19(1):1-5.
[41]
Tiwary A, Namdeo A, Fuentes J, et al. Systems scale assessment of the sustainability implications of emerging green initiatives [J]. Environmental Pollution, 2013,183:213-223.
[42]
王效科,牟玉静,欧阳志云,等.太湖流域主要植物异戊二烯排放研究 [J]. 植物学通报, 2002,20(2):224-230. Wang X K, Mu Y J, Ouyang Z Y, et al. Study on emission of isoprene from major plants living in Taihu basin [J]. Chinese Bulletin of Botany, 2002,20(2):224-230.
[43]
Aydin Y M, Yaman B, Koca H, et al. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: Determination of specific emission rates for thirty-one tree species [J]. Science of the Total Environment, 2014,490:239-253.
[44]
Prendez M, Carvajal V, Corada K, et al. Biogenic volatile organic compounds from the urban forest of the Metropolitan Region, Chile [J]. Environmental Pollution, 2013,183:143-150.
[45]
Noe S M, Penuelas J, Niinemets U. Monoterpene emissions from ornamental trees in urban areas: a case study of Barcelona, Spain [J]. Plant Biology, 2008,10(1):163-169.
[46]
牟玉静,宋文质,张晓山,等.落叶阔叶树异戊二烯排放研究 [J]. 环境化学, 1999,18(1):21-27. Mu Y J, Song W Z, Zhang X S, et al. Study on emissions of isoprene from deciduous and broadleaf trees [J]. Environmental Chemistry, 1999,18(1):21-27.
[47]
白郁华,李金龙,夏 羽,等.杨树排放碳氢化合物的相关因素 [J]. 环境化学, 1995,14(2):118-123. Bai Y H, Li J L, Xia Y, et al. Relative factor of hydrocarbons emission from popular tree [J]. Environmental Chemistry, 1995,14(2):118-123.
[48]
张钢锋,谢绍东.基于树种蓄积量的中国森林VOC排放估算 [J]. 环境科学, 2009,30(10):2816-2822. Zhang G F, Xie S D. Estimation of VOC emission from forests in China based on the volume of tree species [J]. Environmental Science, 2009,30(10):2816-2822.
[49]
Staudt M, Bertin N, Frenzel B, et al. Seasonal variation in amount and composition of monoterpenes emitted by young Pinus pinea trees -Implications for emission modeling [J]. Journal of Atmospheric Chemistry, 2000,35(1):77-99.
[50]
唐利琴,刘 慧,胡 波,等.1961~2014年中国光合有效辐射重构数据集 [J/OL]. 中国科学数据, 2017,2(3).DOI: 10.11922/csdata.170. 2017.0135. Tang L Q, Liu H, Hu B, et al. A dataset of reconstructed photosynthetically active radiation in China (1961 – 2014) [J/OL]. China Scientific Data, 2017,2(3).DOI:10.11922/csdata.170.2017.0135.
[51]
刘 岩,李 莉,安静宇,等.长江三角洲2014年天然源BVOCs排放、组成及时空分布 [J]. 环境科学, 2018,39(2):608-617. Liu Y, Li L, An J Y, et al. Emissions, chemical composition, and spatial and temporal allocation of the BVOCs in the Yangtze River Delta Region in 2014 [J]. Environmental Science, 2018,39(2):608-617.
[52]
郑君瑜,郑卓云,王兆礼,等.珠江三角洲天然源VOCs排放量估算及时空分布特征 [J]. 中国环境科学, 2009,29(4):345-350. Zheng J Y, Zheng Z Y, Wang Z L, et al. Biogenic VOCs emission inventory and its temporal and spatial characteristics in the Pearl River Delta area [J]. China Environmental Science, 2009,29(4):345-350.
[53]
Li L Y, Xie S D. Historical variations of biogenic volatile organic compound emission inventories in China, 1981~2003 [J]. Atmospheric Environment, 2014,95:185-196.
[54]
Wang Z H, Bai Y H, Zhang S Y. A biogenic volatile organic compounds emission inventory for Beijing [J]. Atmospheric Environment, 2003,37(27):3771-3782.
[55]
Guenther A, Geron C, Pierce T, et al. Natural emissions of non- methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America [J]. Atmospheric Environment, 2000, 34(12-14):2205-2230.
[56]
Li L, An J Y, Shi Y Y, et al. Source apportionment of surface ozone in the Yangtze River Delta, China in the summer of 2013 [J]. Atmospheric Environment, 2016,144:194-207.