Emissions of volatile organic compounds from spring wheat in Hetao irrigation district of Inner Mongolia
LIU Zhi-yuan1, BAO Hai1,2, YANG Na1, GAO Xing-xing1, DING Yan-xu1
1. College of Chemistry and Environment Science, Inner Mongolia Normal University, Hohhot 010022, China; 2. Inner Mongolia Key Laboratory of Environmental Chemistry, Hohhot 010022, China
Abstract:A dynamic chamber system, with built-in air temperature, relative humidity and PAR (photo synthetically active radiation) data loggers, was employed to measure BVOC (Biogenic Volatile Organic Compounds) emissions from spring wheat from late May to mid-June 2021 in Hetao irrigation district of Inner Mongolia. The results showed that spring wheat emitted isoprene, α-pinene and toluene by (0.85~39.31), (2.60~14.32) and (6.41~35.39) ng/(g·h) respectively in the growth period and by (1.75~7.99), (1.11~5.81) and (1.91~25.61) ng/(g·h) respectively in the mature stage. The emissions of isoprene and monoterpenes, BTEX under normal conditions (T=303K, PAR=1000µmol/(m2·s)), were (12.92±5.14), (11.98±7.13) and (23.13±7.32) ng/(g·h) respectively in the growth period, and (2.47±0.64), (5.73±1.19) and (14.23±5.27) ng/(g×h) respectively in the mature period. Within certain ranges of temperature and PAR, BVOC emissions were exponentially correlated with ambient temperature and PAR, but would be inhibited when the air temperature exceeded 45℃.
刘智远, 包海, 杨娜, 高星星, 丁艳旭. 内蒙古河套灌区春小麦挥发性有机物排放特征[J]. 中国环境科学, 2022, 42(9): 4026-4032.
LIU Zhi-yuan, BAO Hai, YANG Na, GAO Xing-xing, DING Yan-xu. Emissions of volatile organic compounds from spring wheat in Hetao irrigation district of Inner Mongolia. CHINA ENVIRONMENTAL SCIENCECE, 2022, 42(9): 4026-4032.
宋梦迪,冯 淼,李 歆,等.成都市臭氧重污染成因与来源解析 [J]. 中国环境科学, 2022,42(3):1057-1065. Song M D, Feng M, Li X, et al. Causes and sources of heavy ozone pollution in Chengdu [J]. China Environmental Science, 2022,42(3): 1057-1065.
[2]
Mikael E, Joel A T, Einhard K, et al. A large source of low-volatility secondary organic aerosol [J]. Nature: International weekly journal of science, 2014,506(7489):476-479.
[3]
Wells K C, Millet D B, Cady-Pereira K E, et al. Quantifying global terrestrial methanol emissions using observations from the TES satellite sensor [J]. Atmospheric chemistry and physics, 2014,14(5): 2555-2570.
[4]
刘云凤,龚道程,林尤静,等.南岭箭竹生物源挥发性有机物排放特征 [J]. 中国环境科学, 2022,42(2):568-574. Liu Y F, Gong D C, Lin Y J, et al. Emissions of biogenic volatile organic compounds(BVOCs) from fargesia nanlingensi in Nanling mountains, southern China [J]. China Environmental Science, 2022, 42(2):568-574.
[5]
李玲玉, Guenther A B,顾达萨,等.典型树种挥发性有机物(VOCs)排放成分谱及排放特征 [J]. 中国环境科学, 2019,39(12):4966-4973. Li L Y, Guenther A B, Gu D S, et al. Biogenic emission profile of volatile organic compounds from poplar, sweetgum, and pine trees [J]. China Environmental Science, 2019,39(12):4966-4973.
[6]
范西彩,张新民,张晓红,等.鹤壁市大气挥发性有机物源排放清单研究 [J]. 中国环境科学, 2021,41(2):558-565. Fan X C, Zhang X M, Zhang X H, et al. Research on the emission inventory of volatile organic compounds in Hebi City, Henan Province [J]. China Environmental Science, 2021,41(2):558-565.
[7]
闫 雁,王志辉,白郁华,等.中国植被VOC排放清单的建立 [J]. 中国环境科学, 2005,(1):111-115. Yan Y, Wang Z H, Bai Y H, et al. Establishment of vegetation VOC emission inventory in China [J]. China Environmental Science, 2005, (1):111-115.
[8]
张露露,蒋卫兵,张元勋,等.上海市青浦区大气挥发性有机化合物的特征 [J]. 中国环境科学, 2015,35(12):3550-3561. Zhang L L, Jiang W B, Zhang Y X, et al. The characteristics of ambient volatile organic compounds(VOCs) in Qingpu Shanghai, China [J]. China Environmental Science, 2015,35(12):3550-3561.
[9]
Carter W P L. Development of ozone reactivity scales for volatile organic compounds [J]. Journal of Air Waste Management Association, 1994,44:881-899.
[10]
Benjamin M T, Winer A M. Estimating the ozone-forming potential of urban trees and shrubs [J]. Atmospheric Environment, 1997,32:53-68.
[11]
袁相洋,许 燕,杜英东,等.南京和北京城市天然源挥发性有机物排放差异 [J]. 中国环境科学, 2022,42(4):1489-1500. Yuan X Y, Xu Y, Du Y D, et al. Differences of Biogenic Volatile Organic Compound (BVOC) Emissions from Urban Forests in Nanjing and Beijing [J]. China Environmental Science, 2022,42(4): 1489-1500.
[12]
Guenther A. The contribution of reactive carbon emissions from vegetation to the carbon balance of terrestrial ecosystems [J]. Chemosphere, 2002,49:837–844.
[13]
Duane M, Poma B, Rembges D, et al. Isoprene and its degradation products as strong ozone precursors in Insubria, Northern Italy [J]. Atmospheric Environment, 2002,36:3867-3879.
[14]
Kesselmeier J, Staudt M. Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology [J]. Journal of Atmospheric Chemistry, 1999,33(1):23-88.
[15]
杜昌笛,包 海,赵圆圆.内蒙古沙漠化草原生物源挥发性有机物排放特征 [J]. 中国环境科学, 2019,39(5):1854-1861. Du C D, Bao H, Zhao Y Y, et al. The emission of biogenic volatile organic compounds from desert grassland in Inner Mongolia [J]. China Environmental Science, 2019,39(5):1854-1861.
[16]
吕铃钥,李洪远,杨佳楠.中国植物挥发性有机化合物排放估算研究进展 [J]. 环境污染与防治, 2015,37(11):83-89. Lyu L Y, Li H Y, Yang J N, et al. Research process of the emission estimate of biogenic volatile organic compounds in China [J]. Environmental Pollution & Control, 2015,37(11):83-89.
[17]
白建辉,Brad Baker.内蒙古草原型草地异戊二烯排放特征 [J]. 环境科学学报, 2005,25(3):285-292. Bai J H, Baker B. Emission characteristics of isoprene at typical grassland in the Inner Mongolia grassland. Acta Scientiae Circumstantiae, 2005,25(3):285-292.
[18]
Buśko M, Góral T, Boczkowska M, et al. Relationships between volatile organic compounds with an emphasis on terpene compounds and genetic matrix in inoculated and non-inoculated winter wheat cultivars [J]. Chemistry and Ecology, 2019,35(10):971-986.
[19]
Gomez L G, Loubet B, Lafouge F, et al. Comparative study of biogenic volatile organic compounds fluxes by wheat, maize and rapeseed with dynamic chambers over a short period in northern France [J]. Atmospheric Environment, 2019,214(116855):1-16.
[20]
Aurélie B, Marc A, Niels S, et al. Are BVOC exchanges in agricultural ecosystems overestimated? Insights from fluxes measured in a maize field over a whole growing season [J]. Atmospheric Chemistry and Physics, 2016,16(8):5343-5356.
[21]
Gomez L G, Loubet B, Lafouge F, et al. Effect of senescence on biogenic volatile organic compound fluxes in wheat plants [J]. Atmospheric Environment, 2021,266(118665):1-17.
[22]
郭 凯,刘小京,封晓辉,等.冬季咸水结冰灌溉对河套重盐碱地改良效果研究 [J]. 中国生态农业学报(中英文), 2021,29(4):640-648. Guo K, Liu X J, Feng X H, et al. Reclamation effect of freezing saline water irrigation in winter season on the heavy saline-alkali soil in Hetao Irrigation District [J]. Chinese Journal of Eco-Agriculture, 2021, 29(4):640-648.
[23]
倪世存,梁红柱,付同刚,等.内蒙古河套灌区粮饲兼用高粱和谷子拔节期农艺性状对土壤盐分梯度的响应 [J]. 中国生态农业学报(中英文), 2021,29(4):649-658. Ni S C, Liang H Z, Fu T G, et al. The agronomic traits of dual-purpose sorghum and millet at the jointing stage in response to soil salinity gradients in the Hetao Irrigation District of Inner Mongolia [J]. Chinese Journal of Eco-Agriculture, 2021,29(4):649-658.
[24]
陈向南,吴凤平,李 芳,等.高质量发展模式下内蒙古河套灌区的可交易水量 [J]. 中国人口·资源与环境, 2021,31(2):130-139. Chen X N, Wu F P, Li F, et al. Tradable water quantity in Hetao Irrigation District of Inner Mongolia under the high-quality development mode [J]. China population, Resources and Environment, 2021,31(2):130-139.
[25]
孙世坤.近50年来河套灌区作物生产水足迹时空演变过程研究 [D]. 北京:中国科学院大学, 2013. Sun S K. Research on the Spatial-Temporal Variation of Water Footprint of Crop Production in Nearly 50Years in Hetao Irrigation District [D]. Beijing: University of Chinese Academy of Sciences, 2013.
[26]
高永道,乔荣荣,季树新,等.内蒙古河套灌区作物种植结构变化及其驱动因素 [J]. 中国沙漠, 2021,41(3):110-117. Gao Y D, Qiao R R, Ji S X, et al. Changes and driving factors of crops planting structure in Hetao Irrigation Region in Inner Mongolia [J]. Journal of Desert Research, 2021,41(3):110-117.
[27]
周 龄.内蒙古河套灌区非充分灌溉对春小麦生长的影响 [J]. 东北农业科学, 2020,45(5):28-32. Zhou L. Effect of Deficit Irrigation on Spring Wheat Growth in Hetao Irrigation Area of Inner Mongolia [J]. Journal of Northeast Agricultural Sciences, 2020,45(5):28-32.
[28]
包 海.呼和浩特市绿化树种挥发性有机物及其排放量等级的推定 [J]. 内蒙古石油化工, 2015,41(11):1-4. Bao H. Presumption of Biogenic Volatile Organic Compounds Emissions from Greening tree species and its Emission rate Classification in Hohhot [J]. Inner Mongolia Petrochemical Industry, 2015,41(11):1-4.
[29]
Ortega J, Helmig D, Daly R W, et al. Approaches for quantifying reactive and low-volatility biogenic organic compound emissions by vegetation enclosure techniques- part B: Applications [J]. Chemosphere, 2008,72:365-380.
[30]
Guenther A, Hewitt C, Erickson D. A global model of natural volatile organic compound emissions [J]. Journal of Geophysical Research, 1995,100:8873-8892.
[31]
Nunes, T V, Pio, C A. Emission of volatile organic compounds from Portuguese eucalyptus forests [J]. Chemosphere – Global Change Science, 2001,3:239-248.
[32]
赵 静,白郁华,王志辉,等.我国植物VOCs排放速率的研究 [J]. 中国环境科学, 2004,24(6):15-18. Zhao J, Bai Y H, Wang Z H, et al. Study on the emission rate of VOCs from plants in China [J]. China Environmental Science, 2004,24(6): 15-18.
[33]
赵圆圆,包 海,李达毅,等.锡林郭勒草原不同植物生物源挥发性有机物排放通量 [J]. 内蒙古师范大学学报(自然科学汉文版), 2020,49(3):236-244. Zhao Y Y, Bao H, Li D Y, et al. Biogenic volatile organic compounds emission fluxes from the different plants in Xilingol grassland [J]. Journal of Inner Mongolia normal university (natural science edition), 2020,49(3):236-244.