Differences of biogenic volatile organic compound emissions from urban forests in Nanjing and Beijing
YUAN Xiang-yang1,2, XU Yan1,3, DU Ying-dong3, FENG Zhao-zhong3
1. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China; 2. Beijing Urban Ecosystem Research Station, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; 3. School of Applied Meteorology, Nanjing University of Information Science &Technology, Nanjing 210044, China
Abstract:Total emissions of BVOCs from typical cities (e.g. Beijing and Nanjing) in south and north China in 2015 were estimated by using the data of forest resource check, hourly meteorological observation and G95model algorithms based on light and temperature dependences. The study found that the total BVOC emissions in Nanjing were mainly derived from Slash pine, Quercus and Poplars. Among the dominant tree species in Beijing, Quercus, Poplars and Chinese pine had the highest BVOC emissions. From the total emissions, the VOC emissions from forest sources in Beijing were 2 to 3times higher than those of Nanjing, which were 72114.1t/a and 28025.3t/a, respectively. By contrast, the area-based BVOCs emission intensity in Nanjing was 1.6 times higher than those of Beijing. The seasonal changes of all types of BVOC emissions in both Beijing and Nanjing were unimodal, with the highest emissions in summer and the lowest in winter, while there was little difference in emissions between spring and autumn. In Nanjing, middle-aged forests and near-mature forests were the main emission sources of BVOCs. However, middle-aged forests and young forests were the main emission sources in Beijing. The contribution to total BVOC emissions in each tree age class was mainly determined by its leaf biomass, but the type of dominant tree species in each tree age class also affected the emission of BVOCs to a certain extent.
白建辉,郝楠.亚热带森林植物挥发性有机物(BVOCs)排放通量与大气甲醛之间的关系[J]. 生态环境学报, 2018,27(6):991-999. Bai J H, Hao N. The relationships between biogenic volatile organic compound (BVOC) emissions and atmospheric formaldehyde in a subtropical Pinus plantation in China[J]. Ecology and Environmental Sciences, 2018,27(6):991-999.
[2]
Guenther A. A global model of natural volatile organic compound emissions[J]. Journal of Geophysical Research:Atmospheres, 1995,100(D5):8873-8892.
[3]
Fehsenfeld F, Calvert J, Fall R, et al. Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry[J]. Global biogeochemical cycles, 1992,6:389-430.
[4]
Calfapietra C, Fares S, Manes F, et al. Role of biogenic volatile organic compounds (BVOC) emitted by urban trees on ozone concentration in cities:a review[J]. Environmental Pollution, 2013, 183:71-80.
[5]
Khedive E, Shirvany A, Assareh M H, et al. In situ emission of BVOCs by three urban woody species[J]. Urban Forestry & Urban Greening, 2017,21:153-157.
[6]
McPherson E G, Simpson J R, Xiao Q, et al. Million trees Los Angeles canopy cover and benefit assessment[J]. Landscape and Urban Planning, 2011,99(1):40-50.
[7]
Ren Y, Qu Z L, Du Y Y, et al. Air quality and health effects of biogenic volatile organic compounds emissions from urban green spaces and the mitigation strategies[J]. Environmental Pollution, 2017,230:849- 861.
[8]
Zheng B, Tong D, Li M, et al. Trends in China's anthropogenic emissions since 2010as the consequence of clean air actions[J]. Atmospheric Chemistry and Physics, 2018,18:14095-14111.
[9]
Gu S, Guenther A, Faiola C. Effects of anthropogenic and biogenic volatile organic compounds on Los Angeles air quality[J]. Environmental Science and Technology, 2021,55:12191-12201.
[10]
Laothawornkitkul J, Taylor J E, Paul N, et al. Biogenic volatile organic compounds in the Earth system[J]. New Phytologist, 2009,183:27-51.
[11]
Wang H, Wu Q Z, Guenther A B, et al. A long-term estimation of biogenic volatile organic compound (BVOC) emission in China from 2001~2016:the roles of land cover change and climate variability[J]. Atmospheric Chemistry and Physics, 2021,21:4825-4848.
[12]
谢扬飏,邵敏,陆思华,等.北京市园林绿地植被挥发性有机物排放的估算[J]. 中国环境科学, 2007,27(4):498-502. Xie B Y, Shao M, Lu S H, et al. The estimation of volatile organic compounds emission from landscape plants in Beijing[J]. China Environmental Science, 2007,27(4):498-502.
[13]
李俊仪,田梁宇,伦小秀,等.北京地区植物源挥发性有机物(BVOCs)排放清单[J]. 环境化学, 2017,36(4):776-786. Li J Y, Tian L Y, Lun X X, et al. Emission inventory of botanical volatile organic compounds (BVOCs) in Beijing[J]. Environmental Chemistry, 2017,36(4):776-786.
[14]
张蔷,李令军,赵文慧,等.北京森林BVOCs排放特征及对区域空气质量的影响[J]. 中国环境科学, 2021,41(2):622-632. Zhang Q, Li L J, Zhao W H, et al. Emission characteristics of VOCs from forests and its impact on regional air quality in Beijing[J]. China Environmental Science, 2021,41(2):622-632.
[15]
池彦琪,谢绍东.基于蓄积量和产量的中国天然源VOC排放清单及时空分布[J]. 北京大学学报(自然科学版), 2012,48(3):475-482. Chi Y Q, Xie S D. Spatiotemporal inventory of biogenic volatile organic compound emissions in China based on vegetation volume and production[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2012,48(3):475-482.
[16]
高超,张学磊,修艾军,等.中国生物源挥发性有机物(BVOCs)时空排放特征研究[J]. 环境科学学报, 2019,39(12):4140-4151. Gao C, Zhang X L, Xiu A J, et al. Spatiotemporal distribution of biogenic volatile organic compounds emissions in China[J]. Acta Scientiae Circumstantiae, 2019,39(12):4140-4151.
[17]
Guenther A. Seasonal and spatial variations in natural volatile organic compound emissions[J]. Ecological Applications, 1997,7(1):34-35.
[18]
Guenther A, Karl T, Harley P, et al. Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature)[J]. Atmospheric Chemistry and Physics, 2006,6:3181-3210.
[19]
Goldstein A H, Goulden M L, Munger J W, et al. Seasonal course of isoprene emissions from a midlatitude deciduous forest[J]. Journal of Geophysical Research:Atmospheres, 1998,103(D23):31045-31056.
[20]
中国科学院地理研究所.中国动植物物候观测年报(1963-1988年,1-11号)[M]. 北京:中国科学技术出版社, 1989. Institute of Geography, Chinese Academy of Sciences. Annual report of animal and plant phenology in China (serial reports with number from 1-11, 1963-1988)[M], Beijing:Science Press, 1989.
[21]
宋创业,张琳,吴冬秀,等.2003~2015年CERN植物物候观测数据集[J]. 中国科学数据, 2017,2(1):26-41. Song C Y, Zhang L, Wu D X et al. Plant phenological observation dataset of the Chinese Ecosystem Research Network (2003-2015)[J]. China Scientific Data, 2017,2(1):26-41.
[22]
许燕,袁相洋,李双江,等.北京常见绿化树种BVOCs排放特征及其与光合作用参数的相关性[J]. 环境科学, 2020,41(8):70-78. Xu Y, Yuan X Y, Li S J, et al. Emission characteristics of biogenic volatile compounds (BVOCs) from common greening tree species in northern China and their correlations with photosynthetic parameters[J]. Environmental Science, 2020,41(8):70-78.
[23]
李双江,袁相洋,李琦,等.12种常见落叶果树BVOCs排放清单和排放特征[J]. 环境科学, 2019,40(5):2078-2085. Li S J, Yuan X Y, Li Q, et al. Inventory and characteristics of biogenic volatile organic compounds (BVOCs) for 12deciduous fruit trees[J]. Environmental Science, 2019,40(5):2078-2085.
[24]
Guenther A, Zimmerman P, Wildermuth M. Natural volatile organic compound emission rate estimates for US[J]. Atmospheric Environment, 1994,28(6):1197-1210.
[25]
Aydin Y M, Yaman B, Koca H, et al. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey:determination of specific emission rates for thirty-one tree species[J]. Science of the Total Environment, 2014,490:239-253.
[26]
赵静,白郁华,王志辉,等.我国植物VOCs排放速率的研究[J]. 中国环境科学, 2004,24(6):654-657. Zhao J, Bai Y H, Wang Z H, et al. Studies on the emission rates of plants VOCs in China[J]. China Environmental Science, 2004,24(6):654-657.
[27]
朱轶梅.亚热带城乡区域植物源VOC排放的研究[D]. 杭州:浙江大学, 2011. Zhu Y M. Biogenic VOC inventories of subtropical urban-rural areas[D]. Hangzhou:Zhejiang University, 2011.
[28]
Wang Q G, Han Z W, Wang T J, et al. An estimate of biogenic emissions of volatile organic compounds during summertime in China[J]. Environmental Science and Pollution Research, 2007,14(1):69-75.
[29]
胡泳涛,张远航,谢绍东,等.区域高时空分辨率VOC天然源排放清单的建立[J]. 环境科学, 2001,22(6):1-6. Hu Y T, Zhang Y H, Xie S D, et al. Development of biogenic VOC emissions inventory with high temporal and spatial resolution[J]. Environmental Science, 2001,22(6):1-6.
[30]
Geron C D, Arnts R R. Seasonal monoterpene and sesquiterpene emissions from Pinus taeda and Pinus virginiana[J]. Atmospheric Environment, 2010,44(34):4240-4251.
[31]
李玲玉.植被VOCs排放特征及中国高时空分辨率天然源VOCs排放清单研究[D]. 北京:北京大学, 2015. Li L Y. Characteristics of biogenic VOCs emission and its high-resolution emission inventory in China[D]. Beijing:Peking University, 2015.
[32]
Klinger L F, Li Q J, Guenther A B, et al. Assessment of volatile organic compound emissions from ecosystems of China[J]. Journal of Geophysical Research:Atmospheres, 2002,107(D21):16-21.
[33]
樊冲.河北省森林植物源挥发性有机物排放量研究[D]. 北京:北京林业大学, 2019. Fan C. Study on biogenic volatile organic compounds emission from forest plants in Hebei province[D]. Beijing:Beijing forestry university, 2019.
[34]
王志辉,张树宇,陆思华,等.北京地区植物VOCs排放速率的测定[J]. 环境科学, 2003,24(2):7-12. Wang Z H, Zhang S Y, Lu S H, et al. Screening of 23 plant species in Beijing for volatile organic compound emissions[J]. Environmental Science, 2003,24(2):7-12.
[35]
张刚锋,谢绍东.基于树种蓄积量的中国森林VOCs排放估算[J]. 环境科学, 2009,30(10):2816-2822. Zhang G F, Xie S D. Estimation of VOC emission from forests in China Based on the volume of tree species[J]. Environmental Science, 2009,30(10):2816-2822.
[36]
王效科,牟玉静,欧阳志云,等.太湖流域主要植物异戊二烯排放研究[J]. 植物学通报, 2002,19(2):224-230. Wang X K, Mu Y J, Ouyang Z Y, et al. Study on emission of isoprene from major plants living in Taihu basin[J]. Chinese Bulletin of Botany, 2002,19(2):224-230.
[37]
陈颖,史奕,何兴元.沈阳市四种乔木树种BVOCs排放特征[J].生态学杂志, 2009,28(12):2410-2416. Chen Y, Shi Y, He X Y. Emission characteristics of biogenic volatile organic compounds from four tree species in Shenyang China[J]. Chinese Journal of Ecology, 2009,28(12):2410-2416.
[38]
熊峰,吕俊瑶,周丕生,等.基于飞行时间质谱原位检测的5种绿化植物异戊二烯释放速率[J]. 上海交通大学学报(农业科学版), 2019,37(4):89-94. Xiong F, Lv J Y, Zhou P S, et al. Isoprene emission rate of five plant species based on in-situ time-of-flight mass spectrometry[J]. Journal of Shanghai Jiaotong University (Agricultural Science), 2019,37(4):89-94.
[39]
Chen J, Tang J, Yu X. Environmental and physiological controls on diurnal and seasonal patterns of biogenic volatile organic compound emissions from five dominant woody species under field conditions[J]. Environmental Pollution, 2020,259:113955.
[40]
吕迪.陕西森林植被BVOCs排放特征研究[D]. 杨凌:西北农林科技大学, 2016. Lv D. Estimation of BVOCs emission from forests in Shanxi Province[D]. Yangling:Northwest Agriculture & Forestry University, 2016.
[41]
李庆军,Klinger L F.中国不同气候带植被挥发性有机化合物通量与生态系统演替的相关性[J]. 植物学报, 2001,43(10):1065-1071. Li Q J, Klinger L F. The correlation between the volatile organic compound emissions and the vegetation succession of the ecosystems in different climatic zones of China[J]. Acta Botanica Sinica, 2001, 43(10):1065-1071.
[42]
Karl M, Guenther A, Leip A, et al. A new European plant-specific emission inventory of biogenic volatile compounds for use in atmospheric transport models[J]. Biogeosciences, 2009,6(6):1059- 1087.
[43]
宋媛媛,张艳燕,王勤耕,等.基于遥感资料的中国东部地区植被VOCs排放强度研究[J]. 环境科学学报, 2012,32(9):2216-2227. Song Y Y, Zhang Y Y, Wang Q G, et al. 2012. Estimation of biogenic VOCs emissions in Eastern China based on remote sensing data[J]. Acta Scientiae Circumstantiae, 2021,32(9):2216-2227.
[44]
方精云,陈安平,赵淑清,等.中国森林生物量的估算:对Fang等Science一文(Science,2001,291:2320~2322)的若干说明[J]. 植物生态学报, 2002,26(2):243-249. Fang J Y, Chen A P, Zhao S Q, et al. 2002. Estimating biomass carbon of China's forests:Supplementary notes on report published in Science (291:2320-2322) by Fang et al. (2001)[J]. Acta Phytoecologica Sinica, 2002,26(2):243-249.
[45]
成俊卿,杨家驹,刘鹏.中国木材志[M]. 北京:中国林业出版社, 1992. Cheng J Q, Yang J J, Liu P. Anatomy and properties of Chinese woods[M]. Beijing:Chinese Forestry Publishing House, 1992.
[46]
中国林业科学研究院木材工业研究所.中国主要树种的木材物理力学性质[M]. 北京:中国林业出版社, 1982. Research Institute of Wood Industry, Chinese Academy of Forestry. Physical and mechanical properties of primary tree species in China[M]. Beijing:Chinese Forestry Press, 1982.
[47]
冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M]. 北京:科学出版社, 1999. Feng Z W, Wang X K, Wu G. Biomass and primary productivity of forest ecosystems in China[M]. Beijing:Science Press, 1999.
[48]
罗天祥.中国主要森林类型生物生产力格局及其数学模型[D]. 北京:中国科学院研究生院(国家计划委员会自然资源综合考察委员会), 1996. Luo T X. Patterns of net primary productivity for Chinese major forest types and their mathematical models[D]. Beijing:Chinese Academy of Sciences (The Commission for Integrated Survey of Natural Resources), 1996.
[49]
Simpson D, Winiwarter W, Börjesson G. Inventorying emissions from nature in Europe[J]. Journal of Geophysical Research, 1999,104:8113-8152.
[50]
Guenther A, Archer S, Greenberg J, et al. Biogenic hydrocarbon emissions and landcover/climate change in a subtropical savanna[J]. Physics and Chemistry of the Earth, 1999,24(6):659-667.
[51]
Pegoraro E, Rey A, Bobich E G, et al. Effect of elevated CO2 concentration and vapour pressure deficit on isoprene emission from leaves of Populus deltoides during drought[J]. Functional Plant Biology, 2004,31(12):1137-1147.
[52]
Chen F, Dudhia J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5modeling system. Part Ⅰ:model implementation and sensitivity[J]. Monthly Weather Review, 2001,129:569-585.
[53]
Li M, Huang X, Li L, et al. Estimation of biogenic volatile organic compound (BVOC) emissions from the terrestrial ecosystem in China using real-time remote sensing data[J]. Atmospheric Chemistry and Physics Discussions, 2006,6:3181-3210.
[54]
Li L Y, Xie S D. Historical variations of biogenic volatile organic compound emission inventories in China, 1981-2003[J]. Atmospheric Environment, 2014,95:185-196.
[55]
Wang Z H, Bai Y H, Zhang S Y. A biogenic volatile organic compounds emission inventory for Beijing[J]. Atmospheric Environment, 2003,37:3771-3782.
[56]
Wang H, Wu Q Z, Liu H J, et al. Sensitivity of biogenic volatile organic compound emissions to leaf area index and land cover in Beijing[J]. Atmospheric Chemistry and Physics, 2018,18:9583-9596.
[57]
夏春林,肖琳.京津冀天然源挥发性有机物排放研究[J]. 环境科学学报, 2019,39(8):2680-2689. Xia C L, Xiao L. Estimation of biogenic volatile organic compounds emissions in Jing-Jin-Ji[J]. Acta Scientiae Circumstantiae, 2019, 39(8):2680-2689.
[58]
张倩,李洪远.城市绿地对大气环境的潜在负面效应[J]. 景观设计, 2019,2:4-11. Zhang Q, Li H Y. Potential negative effects of urban green space on the atmospheric environment[J]. Landscape Design, 2019,2:4-11.
[59]
Yuan X Y, Calatayud V, Gao F, et al. Interaction of drought and ozone exposure on isoprene emission from extensively cultivated poplar[J]. Plant, Cell and Environment, 2016,39:2276-2287.
[60]
张富华,黄明详,张晶,等.生物源挥发性有机物排放模型及排放模拟研究综述[J]. 中国环境管理, 2014,1:30-43. Zhang F H, Huang M X, Zhang J, et al. A review on research of Biogenic Volatile Organic Compounds (BVOCs) emission model and emission simulation[J]. Chinese Journal of Environmental Management, 2014,1:30-43.
[61]
Martin T A, Hinckley T M, Meinzer F C, et al. Boundary layer conductance, leaf temperature and transpiration of Abies amabilis branches[J]. Tree Physiology, 1999,19:435-443.
[62]
Leuzinger S, Körner C. Tree species diversity affects canopy leaf temperatures in a mature temperate forest[J]. Agricultural and Forest Meteorology, 2007,146:29-37.
[63]
Nelson J A, Bugbee B. Analysis of environmental effects on leaf temperature under sunlight, High Pressure Sodium and Light Emitting Diodes[J]. PLoS ONE, 2015,10(10):e0138930.