PCDD/Fs emission inventory and environmental impact of municipal solid waste incineration plants in Shandong Province
TANG Ling1,2, GUO Jing1, GUO Peng-heng3, LI Jian-hui4, GAN Di-song5, JIA Min1, QU Jia-bao6, BO Xin5,7
1. School of Economics and Management, Beihang University, Beijing 100191, China; 2. School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China; 3. Yunnan Hi-Tech Environmental Protection Co., Ltd, Kunming 650032, China; 4. College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China; 5. Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; 6. Appraisal Center for Environment and Engineering, Ministry of Ecology and Environment, Beijing 100012, China; 7. BUCT Institute for Carbon-neutrality of Chinese Industries, Beijing 100029, China
Abstract:Based on the field measured data in 2018, this study takes Shandong Province as a typical case study and comprehensively considers the production technology, production capacity, incinerator type and annual MSW incineration amount, to establish PCDD/Fs emission inventory of municipal solid waste (MSW) incineration power plants in Shandong Province using the bottom-up approach and introduce CALPUFF model to quantitatively evaluate environmental impacts caused by PCDD/Fs emissions under current and different scenarios. The results show that the range of PCDD/Fs emission factors was 24.68~290.90ng TEQ/t, with an average value of 75.11ng TEQ/t. The total emission was 1.07g TEQ in 2018. The estimated emission factors and total emissions were lower than existing studies. In terms of incinerator type, the emission factor of grate firing incinerators was lower than that of fluidized bed incinerators, indicating that it has a good control effect on PCDD/Fs emissions. In terms of spatial distribution, the largest MSW incineration amount was mainly concentrated in Weifang, Jining and Zibo city, and total emissions and atmospheric simulated concentrations were also relatively high. In terms of scenario comparison, the future scenario with stricter standards and improved MSW incineration rate was more in line with the requirements of the future development planning of the MSW incineration industry in Shandong Province, and can also achieve the goal of reducing the PCDD/Fs emissions and environmental impacts. Compared with the baseline scenario, the average annual concentration contribution in this scenario will be reduced by 22.73% and 24.19%, respectively.
中华人民共和国国家统计局,年度数据库-生活垃圾清运量 [EB/OL]. https://data.stats.gov.cn/easyquery.htm?cn=C01. National Bureau of Statistics of China. Annual database-Municipal solid waste amount [EB/OL]. https://data.stats.gov.cn/easyquery.htm?cn=C01.
[2]
Wienchol P, Szlęk A, Ditaranto M. Waste-to-energy technology integrated with carbon capture-challenges and opportunities [J]. Energy, 2020,198:117352.
[3]
Guo Y, Glad T, Zhong Z, et al. Environmental life-cycle assessment of municipal solid waste incineration stocks in Chinese industrial parks [J]. Resources, Conservation and Recycling, 2018,139:387-395.
[4]
Chen H, Li J, Li T, et al. Performance assessment of a novel medical-waste-to-energy design based on plasma gasification and integrated with a municipal solid waste incineration plant [J]. Energy, 2022,245:123156.
[5]
Nzihou A, Themelis N J, Kemiha M, et al. Dioxin emissions from municipal solid waste incinerators (MSWIs) in France [J]. Waste Management, 2012,32(12):2273-2277.
[6]
Tang H, Cui K, Xing J, et al. Part I: PM2.5and Polychlorinated Dibenzo-p-dioxins and Dibenzofurans (PCDD/Fs) in the Ambient Air of Southern China [J]. Aerosol and Air Quality Research, 2017, 17(6):1550-1569.
[7]
周志广,田洪海,李楠,等.小型焚烧设施烟气中二噁英类的排放和控制 [J]. 环境污染与防治, 2007,(3):76-78. Zhou Z G, Tian H H, L N, et al. Emission and control of PCDD/Fs in flue gas from small-scale incinerators [J]. Environmental Pollution and Prevention, 2007,(3):76-78.
[8]
Tian H, Gao J, Lu L, et al. Temporal trends and spatial variation characteristics of hazardous air pollutant emission inventory from municipal solid waste incineration in China [J]. Environmental Science & Technology, 2012,46(18):10364-10371.
[9]
李英华,杨朝旭,伯鑫,等.生活垃圾焚烧厂周边土壤中PCDD/Fs及重金属含量 [J]. 中国环境科学, 2020,40(2):726-735. Li Y H, Yang Z X, Bo X, et al. PCDD/Fs levels and heavy metal characteristics in soils surrounding typical municipal waste incineration plants in the Chengdu area [J]. China Environmental Science, 2020,40(2):726-735.
[10]
Liu H, Kong S, Liu Y, et al. Pollution control technologies of dioxins in municipal solid waste incinerator [J]. Procedia Environmental Sciences, 2012,16:661-668.
[11]
Viel J F, Floret N, Deconinck E, et al. Increased risk of non-Hodgkin lymphoma and serum organochlorine concentrations among neighbors of a municipal solid waste incinerator [J]. Environment International, 2011,37(2):449-453.
[12]
GB 18485-2014 生活垃圾焚烧污染控制标准 [S]. 北京:中国环境科学出版社, 2014. GB 18485-2014 Standard for pollution control on the municipal solid waste incineration [S]. Beijing: China Environmental Science Press, 2014.
[13]
山东省住房和城乡建设厅.山东省住房和城乡建设事业发展第十四个五年规划 (2021-2025年) [EB/OL]. http://zjt.shandong.gov.cn/art/2021/6/18/art_102847_10293970.html. Housing and Urban-Rural Development of Shandong Province. The 14th Five-Year Plan for Housing and Urban-Rural Development of Shandong Province (2021-2025) [EB/OL]. http://zjt.shandong.gov.cn/art/2021/6/18/art_102847_10293970.html.
[14]
Ni Y, Zhang H, Fan S, et al. Emissions of PCDD/Fs from municipal solid waste incinerators in China [J]. Chemosphere, 2009,75(9):1153-1158.
[15]
Zhou Q, Yang J, Liu M, et al. Toxicological risk by inhalation exposure of air pollution emitted from China’s municipal solid waste incineration [J]. Environmental Science & Technology, 2018,52(20): 11490-11499.
[16]
Fu Z, Lin S, Tian H, et al. A comprehensive emission inventory of hazardous air pollutants from municipal solid waste incineration in China [J]. Science of the Total Environment, 2022,826:154212.
[17]
Zhang B, Meng F, Shi C, et al. Modeling the atmospheric transport and deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans in North America [J]. Atmospheric Environment, 2009,43(13):2204-2212.
[18]
陈露露,黄韬,陈凯杰,等.我国PCDD/Fs网格化大气排放清单 [J]. 环境科学, 2020,41(2):510-519. Chen L L, Huang T, Chen K J, et al. Gridded atmospheric emission inventory of PCDD /Fs in China [J]. Environmental Science, 2015, 2020,41(2):510-519.
[19]
杨艳艳,韩静磊,青 宪,等.珠江三角洲典型行业排放废气中PCDD/Fs污染水平 [J]. 中国环境科学, 2013,33(S1):186-190. Yang Y Y, Han J L, Qing X, et al. PCDD/Fs pollutions in exhaust gases from typical industries of the Pearl River Delta [J]. China Environmental Science, 2013,33(S1):186-190.
[20]
Tang L, Qu J, Mi Z, et al. Substantial emission reductions from Chinese power plants after the introduction of ultra-low emissions standards [J]. Nature Energy, 2019,4(11):929-938.
[21]
Tang L, Xue X, Jia M, et al. Iron and steel industry emissions and contribution to the air quality in China [J]. Atmospheric Environment, 2020,237:117668.
[22]
汤 铃,薛晓达,伯鑫,等.中国水泥排放清单及分布特征 [J]. 环境科学, 2020,41(11):4776-4785. Tang L, Xue X D, Bo X, et al. Contribution of emissions from cement to air quality in China [J]. Environmental Science, 2020,41(11):4776-4785.
[23]
Bo X, Jia M, Xue X, et al. Effect of strengthened standards on Chinese ironmaking and steelmaking emissions [J]. Nature Sustainability, 2021,4(9):811-820.
[24]
李敏.危险废弃物焚烧厂周边介质二噁英分布特性及环境影响模拟研究 [D]. 杭州:浙江大学, 2018. Li M. Simulation research on distribution and environmental impact of PCDD/Fs from hazardous waste incinerators [D]. Hangzhou: Zhejiang University, 2018.
[25]
王超.危险废物焚烧厂二恶英排放扩散沉降模拟方法的研究 [D]. 杭州:浙江大学, 2018. Wang C. Study on modeling method of the PCDD/Fs dispersion and deposition emitted from a hazardous waste incineration plant [D]. Hangzhou: Zhejiang University, 2018.
[26]
DB 46/484-2019 生活垃圾焚烧污染控制标准 [S]. 海南省市场监督管理局, 2019. DB 46/484-2019 Standard for pollution control on the municipal solid waste incineration [S]. Hainan Market Supervision Administration, 2019.
[27]
SZDB/Z 233-2017 生活垃圾处理设施运营规范 [S]. 深圳市市场监督管理局, 2017. SZDB/Z 233-2017 Operational standards for municipal solid waste treatment facilities [S]. Shenzhen Administration for Market Regulation, 2017.
[28]
Chen Y, Meng Y, Cao H. Simulation of Spatial Distributions of Atmospheric Heavy Metals in Xinzhuang and Assessment of Their Health Risks [C]//7th Annual Meeting of Risk Analysis Council of China Association for Disaster Prevention (RAC-2016). Atlantis Press, 2016:464-469.
[29]
伯鑫.CALPUFF模型技术方法与应用 [M]. 北京:中国环境出版社, 2016:23-35. Bo X. CALPUFF model technology method and application [M]. Bejing: China Environmental Science Press, 2016:23-35.
[30]
伯鑫,杨朝旭,贾瑜玲,等.西南典型区域焚烧厂排放二噁英类污染物环境影响研究 [M]. 北京:中国环境出版社, 2020:35-50. Bo X, Yang Z X, Jia Y L, et al. Study on environmental impact of dioxin-like pollutants emitted from typical incineration plants in Southwest China [M]. Beijing: China Environmental Science Press, 2020:35-50.
[31]
阚 慧,伯鑫,屈加豹,等.2015年海南省火电行业大气环境影响研究 [J]. 中国环境科学, 2019,39(1):428-439. Kan H, Bo X, Qu J B, et al. Air quality impacts of power plant emissions in Hainan Province, 2015 [J]. China Environmental Science, 2019,39(1):428-439.
[32]
伯鑫,王刚,温 柔,等.京津冀地区火电企业的大气污染影响 [J]. 中国环境科学, 2015,35(2):364-373. Bo X, Wang G, Wen R, et al. Air pollution effect of the thermal power plants in Beijing-Tianjin-Hebei region [J]. China Environmental Science, 2015,35(2):364-373.
[33]
伯鑫,吴忠祥,王刚,等. CALPUFF模式的标准化应用技术研究 [J]. 环境科学与技术, 2014,37(S2):530-534.75. Bo X, Wu Z X, Wang G, et al. Study on the standardized application of CALPUFF Model [J]. Environmental Science and Technology, 2014, 37(S2):530-534.75.
[34]
伯鑫,丁 峰,徐鹤,等.大气扩散CALPUFF模型技术综述 [J]. 环境监测管理与技术, 2009,21(3):9-13,47. Bo X, Ding F, Xu H, et al. Review of atmospheric diffusion spersion model CALPUFF technology [J]. Environmental Monitoring Management and Technology, 2009,21(3):9-13,47.
[35]
崔建升,雷团团,伯鑫,等.海南省大气污染源排放清单及环境影响研究 [J]. 环境污染与防治, 2020,42(6):651-659,665. Cui J S, Lei T T, Bo X, et al. Studies on air pollutant emission inventory and environmental impact in Hainan Province [J]. Environmental Pollution and Prevention, 2020,42(6):651-659,665.
[36]
田 飞,伯鑫,薛晓达,等.基于复杂地形-气象场的二噁英污染物沉降研究 [J]. 中国环境科学, 2019,39(4):1678-1686. Tian F, Bo X, Xue X D, et al. Study on settlement of dioxin pollutants under complex terrain-weather conditions [J]. China Environmental Science, 2019,39(4):1678-1686.
[37]
孙博飞,伯鑫,张尚宣,等.钢厂烧结机烟气排放对土壤二噁英浓度的影响 [J]. 中国环境科学, 2017,37(11):4222-4229. Sun B F, Bo X, Zhang S X, et al. Effect of exhaust gas from sintering machines on the concentration of dioxin in soil around a steel plant [J]. China Environmental Science, 2017,37(11):4222-4229.
[38]
王成鑫,楚英豪,阮建辉,等.AERMOD模型地表参数更新对模拟效果影响 [J]. 中国环境科学, 2022,42(5):2070-2077. Wang C X, Chu Y H, Ruan J H, et al. Research on the influence of AERMOD model surface parameter update on simulation effect [J]. China Environmental Science, 2022,42(5):2070-2077.
[39]
史梦雪,伯鑫,田 飞,等.基于不同空气质量模型的二噁英沉降效果研究 [J]. 中国环境科学, 2020,40(1):24-30. Shi M X, Bo X, Tian F, et al. Study on deposition effects of dioxins based on different air quality models [J]. China Environmental Science, 2020,40(1):24-30.
[40]
赵金平,钟英立,徐小静,等.南方地区典型生物质燃烧锅炉二噁英排放污染特征 [J]. 中国环境科学, 2017,37(9):3473-3480. Zhao J P, Zhong Y L, Xu X J, et al. Research on pollution characteristic of dioxin emitted from typical biomass combustion boiler in southern region [J]. China Environmental Science, 2017, 37(9):3473-3480.
[41]
魏 巍,王书肖,郝吉明.中国人为源VOC排放清单不确定性研究 [J]. 环境科学, 2011,32(2):305-312. Wei W, Wang S X, Hao J M. Uncertainty analysis of emission inventory for volatile organic compounds from anthropogenic sources in China [J]. Environmental Science, 2011,32(2):305-312.
[42]
杨益,姬亚芹,高玉宗,等.西宁市农牧源氨排放清单及其分布特征 [J]. 环境科学, 2022,43(4):1844-1852. Yang Y, Ji Y P, Gao Y Z, et al. Agricultural ammonia emission inventory and its distribution in Xining city [J]. Environmental Science, 2022,43(4):1844-1852.
[43]
张凯,于周锁,高 宏,等.兰州盆地人为源大气污染物网格化排放清单及其空间分布特征 [J]. 环境科学学报, 2017,37(4):1227-1242. Zhang K, Yu Z S, Gao H, et al. Gridded emission inventories and spatial distribution characteristics of anthropogenic atmospheric pollutants in Lanzhou valley [J]. Journal of Environmental Sciences, 2017,37(4):1227-1242.
[44]
HJ 77.2-2008 环境空气和废气二英类的测定同位素稀释高分辨气相色谱-高分辨质谱法 [S]. HJ 77.2-2008 Ambient air and flue gas determination of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) Isotope dilution HRGC-HRMS [S].
[45]
山东省住房和城乡建设厅.印发《关于进一步推进生活垃圾分类工作的实施意见》的通知 [EB/OL]. http://zjt.shandong.gov.cn/art/2021/7/15/art_103756_10301860.html. Housing and Urban-Rural Development of Shandong Province. Notice of the implementation opinions on further promoting the work of municipal solid waste classification [EB/OL]. http://zjt.shandong.gov.cn/art/2021/7/15/art_103756_10301860.html.
[46]
中华人民共和国国家发展和改革委员会.“十三五”全国城镇生活垃圾无害化处理设施建设规划 [EB/OL]. https://www.ndrc.gov.cn/fggz/fzzlgh/gjjzxgh/201706/t20170615_1196798.html?code=&state=123. National Development and Reform Commission. The 13th Five-Year Plan for national construction of harmless treatment facilities for municipal solid waste [EB/OL]. https://www.ndrc.gov.cn/fggz/fzzlgh/gjjzxgh/201706/t20170615_1196798.html?code=&state=123.
[47]
Li Y, Zhao X, Li Y, et al. Waste incineration industry and development policies in China [J]. Waste Management, 2015,46:234-241.
[48]
Tian H, Gao J, Hao J, et al. Atmospheric pollution problems and control proposals associated with solid waste management in China: a review [J]. Journal of Hazardous Materials, 2013,252:142-154.
[49]
Xin-Gang Z, Gui-Wu J, Ang L, et al. Technology, cost, a performance of waste-to-energy incineration industry in China [J]. Renewable and Sustainable Energy Reviews, 2016,55:115-130.
[50]
山东省住房和城乡建设厅.关于进一步加强城市生活垃圾焚烧处理工作的意见的通知 [EB/OL]. http://zjt.shandong.gov.cn/art/2017/2/3/art_102847_7789833.html. Housing and Urban-Rural Development of Shandong Province. Notice on opinions on further strengthening the incineration of municipal solid waste [EB/OL]. http://zjt.shandong.gov.cn/art/2017/2/3/art_102847_7789833.html.
[51]
Hong J, Chen Y, Wang M, et al. Intensification of municipal solid waste disposal in China [J]. Renewable and Sustainable Energy Reviews, 2017,69:168-176.
[52]
Zhu F, Li X, Lu J W, et al. Emission characteristics of PCDD/Fs in stack gas from municipal solid waste incineration plants in Northern China [J]. Chemosphere, 2018,200:23-29.
[53]
Yan J H, Chen T, Li X D, et al. Evaluation of PCDD/Fs emission from fluidized bed incinerators co-firing MSW with coal in China [J]. Journal of Hazardous Materials, 2006,135(1-3):47-51.
[54]
Jin Y, Liu H, Li X, et al. Health risk assessment of PCDD/F emissions from municipal solid waste incinerators (MSWIs) in China [J]. Environmental Technology, 2012,33(22):2539-2545.
[55]
Wang Y H, Lin C, Chang-Chien G P. Characteristics of PCDD/Fs in a particles filtration device with activated carbon injection [J]. Aerosol and Air Quality Research, 2009,9(3):317-322.
[56]
雷 鸣,海 景,程 江,等.小型生活垃圾热处理炉二恶英和重金属的排放特征 [J]. 中国环境科学, 2017,37(10):3836-3844. Lei M, Hai J, Cheng J, et al. Emission characteristics of dioxins and heavy metals from small-scale thermal treatment furnaces for disposing domestic solid waste [J]. China Environmental Science, 2017,37(10):3836-3844.
[57]
Peng Y, Lu S, Li X, et al. Formation, measurement, and control of dioxins from the incineration of municipal solid wastes: recent advances and perspectives [J]. Energy & Fuels, 2020,34(11):13247-13267.
[58]
Yang L, Liu G, Shen J, et al. Environmental characteristics and formations of polybrominated dibenzo-p-dioxins and dibenzofurans [J]. Environment International, 2021,152:106450.
[59]
Guo C J, Wang M S, Lin S L, et al. Emissions of PCDD/Fs and PCBs during the cold start-up of municipal solid waste incinerators [J]. Aerosol and Air Quality Research, 2014,14(6):1593-1604.
[60]
Shen H M, Wang Y F, Chyang C S, et al. Effects of sulfur and calcium compounds on dioxin reduction in a fluidized bed combustor [J]. Aerosol and Air Quality Research, 2019,19(5):1079-1094.
[61]
Li X, Ma Y, Zhang M, et al. Study on the relationship between waste classification, combustion condition and dioxin emission from waste incineration [J]. Waste Disposal & Sustainable Energy, 2019,1(2): 91-98.
[62]
Liu H, Kong S, Liu Y, et al. Pollution control technologies of dioxins in municipal solid waste incinerator [J]. Procedia Environmental Sciences, 2012,16:661-668.
[63]
Zhan M X, Liu Y W, Ye W W, et al. Modification of activated carbon using urea to enhance the adsorption of dioxins [J]. Environmental Research, 2022,204:112035.
[64]
Li X, Ma Y, Zhang M, et al. Study on the relationship between waste classification, combustion condition and dioxin emission from waste incineration [J]. Waste Disposal & Sustainable Energy, 2019,1(2): 91-98.
[65]
Lu S Y, Du Y, Yan J H, et al. Dioxins and their fingerprint in size-classified fly ash fractions from municipal solid waste incinerators in China—Mechanical grate and fluidized bed units [J]. Journal of the Air & Waste Management Association, 2012,62(6):717-724.
[66]
Ma C, Li B, Chen D, et al. An investigation of an oxygen-enriched combustion of municipal solid waste on flue gas emission and combustion performance at a 8MWth waste-to-energy plant [J]. Waste Management, 2019,96:47-56.
[67]
Guo C J, Wang M S, Lin S L, et al. Emissions of PCDD/Fs and PCBs during the cold start-up of municipal solid waste incinerators [J]. Aerosol and Air Quality Research, 2014,14(6):1593-1604.
[68]
Zhan M X, Liu Y W, Ye W W, et al. Modification of activated carbon using urea to enhance the adsorption of dioxins [J]. Environmental Research, 2022,204:112035.
[69]
Zhou H, Meng A, Long Y, et al. A review of dioxin-related substances during municipal solid waste incineration [J]. Waste Management, 2015,36:106-118.