Spatiotemporal changes of XCO2 and anthropogenic CO2 emission in China based on multi-source carbon satellite fusion product
WANG Zhen-shan1,2, SHENG Meng-ya3, XIAO Wei1,2, YANG Feng-zhu1,2, LIN Bin4, XU Xing-zhu5, LIU Yi-bo1,2
1. Collaborative Innovation Center on Forecast and Evaluation Meteorological Disasters(CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China; 2. School of Applied Meteorology/Jiangsu Key Laboratory of Agricultural Meteorology/Institute of Ecology, Nanjing University of Information Science & Technology, Nanjing 210044, China; 3. Key Laboratory of Digital Earth Science/Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; 4. The 7th Institute of Geology & Mineral Exploration of Shandong Province, Linyi 276006, China; 5. Natural Resources and Planning Bureau of Linyi City, Linyi 276006, China
Abstract:Accurately assess the spatiotemporal changes of atmospheric CO2 concentration and anthropogenic CO2 emission, is critical to mitigate greenhouse gas emissions contributing to climate change. The spatial distribution and interannual change of column-averaged dry air mole fraction of CO2 (XCO2) and anthropogenic CO2 emission in China from 2010 to 2020 were evaluated using the continuous XCO2 dataset (Mapping-XCO2) fused from the Greenhouse Gases Observing Satellite (GOSAT) and Orbiting Carbon Observatory (OCO-2). Results showed that Mapping-XCO2 had a high consistency with in-situ observations from atmospheric background stations, indicating the potential of Mapping-XCO2 to apply for regional analysis. From 2010 to 2020, the annual average XCO2 in China was 400.4×10-6, with a high value in the East and a low value in the West. The annual increase rate of XCO2 was 2.47×10-6. The XCO2 anomalies in the non-growing season were well consistent with anthropogenic CO2 emissions collected from EDGAR and ODIAC, with a correlation coefficient of 0.71 and 0.67 at provincial-level, respectively. The increase rate of anthropogenic CO2 emissions in Beijing-Tianjin-Hebei, Yangtze River Delta and Pearl River Delta was 0.12×10-6/a, 0.08×10-6/a and 0.08×10-6/a respectively. The results demonstrate the reliability and effectiveness of the satellite retrieved XCO2 data in evaluating atmospheric CO2 concentration and anthropogenic CO2 emissions.
王震山, 绳梦雅, 肖薇, 杨凤珠, 林彬, 徐兴祝, 柳艺博. 基于多源碳卫星融合产品的中国地区XCO2与人为CO2排放时空变化[J]. 中国环境科学, 2023, 43(3): 1053-1063.
WANG Zhen-shan, SHENG Meng-ya, XIAO Wei, YANG Feng-zhu, LIN Bin, XU Xing-zhu, LIU Yi-bo. Spatiotemporal changes of XCO2 and anthropogenic CO2 emission in China based on multi-source carbon satellite fusion product. CHINA ENVIRONMENTAL SCIENCECE, 2023, 43(3): 1053-1063.
Friedlingstein P, Jones M W, O'sullivan M, et al. Global Carbon Budget 2021[J]. Earth System Science Data, 2022,14(4):1917-2005.
[2]
刘良云,陈良富,刘毅,等.全球碳盘点卫星遥感监测方法、进展与挑战[J]. 遥感学报, 2022,26(2):243-267. Liu L Y, Chen L F, Liu Y, et al. Satellite remote sensing for global stocktaking:methods, progress and perspectives[J]. National Remote Sensing Bulletin, 2020,26(2):243-267.
[3]
Le Quéré C, Andrew R M, Canadell J G, et al. Global Carbon Budget 2016[J]. Earth System Science Data, 2016,8(2):605-649.
[4]
居为民,田向军,江飞,等.基于多源卫星遥感的高分辨率全球碳同化系统研究进展[J]. 中国基础科学, 2019,21(3):24-27,35. Ju W M, Tian X J, Jiang F, et al. Achievements of study on the global carbon assimilation system based on multisource remote sensing data[J]. China Basic Science, 2019,(3):24-27,35.
[5]
Wang J, Feng L, Palmer P I, et al. Reply to:The size of the land carbon sink in China[J]. Nature, 2022,603(7901):E7-E9.
[6]
蔡兆男,成里京,李婷婷,等.碳中和目标下的若干地球系统科学和技术问题分析[J]. 中国科学院院刊, 2021,36(5):602-613. Cai Z N, Chen L J, Li T T, et al. Key scientific and technical issues in earth system science towards achieving carbon neutrality in China[J]. Bulletin of Chinese Academy of Sciences, 2021,36(5):602-613.
[7]
布然,雷莉萍,郭丽洁,等.大气CO2浓度时空变化卫星遥感监测的应用潜力分析[J]. 遥感学报, 2015,19(1):34-45. Bu R, Lei L P, Guo L J, et al. Analysis of temporal and spatial potential applications of satellite remote sensing of atmospheric CO2 concentration monitoring[J]. Journal of Remote Sensing, 2015,19(1):34-45.
[8]
Gurney K R, Liang J, O'keeffe D, et al. Comparison of global downscaled versus bottom-up fossil fuel CO2 emissions at the urban scale in four US urban areas[J]. Journal of Geophysical Research:Atmospheres, 2019,124(5):2823-2840.
[9]
刘毅,王婧,车轲,等.温室气体的卫星遥感——进展与趋势[J]. 遥感学报, 2021,25(1):53-64. Liu Y, Wang J, Che K, et al. Satellite remote sensing of greenhouse gases:Progress and trends[J]. National Remote Sensing Bulletin, 2021,25(1):53-64.
[10]
李正强,谢一凇,石玉胜,等.大气环境卫星温室气体和气溶胶协同观测综述[J]. 遥感学报, 2022,26(5):795-816. Li Z Q, Xie Y S, Shi Y S. et al. A review of collaborative remote sensing observation of greenhouse gases and aerosol with atmospheric environment satellites[J]. National Remote Sensing Bulletin, 2022, 26(5):795-816.
[11]
Yang D, Boesch H, Liu Y, et al. Toward high precision XCO2 retrievals from TanSat observations:Retrieval improvement and validation against TCCON measurements[J]. Journal of Geophyscial Research:Atmospheres, 2020,125(22):e2020JD032794.
[12]
Eldering A, Taylor T E, O'dell C W, et al. The OCO-3mission:measurement objectives and expected performance based on 1year of simulated data[J]. Atmospheric Measurement Techniques, 2019,12(4):2341-2370.
[13]
Eldering A, O'dell C W, Wennberg P O, et al. The Orbiting Carbon Observatory-2:first 18months of science data products[J]. Atmospheric Measurement Techniques, 2017,10(2):549-563.
[14]
Liang A, Gong W, Han G, et al. Comparison of Satellite-Observed XCO2 from GOSAT, OCO-2, and Ground-Based TCCON[J]. Remote Sensing, 2017,9(10):1033.
[15]
Oishi Y, Ishida H, Nakajima T, et al. The impact of different support vectors on GOSAT-2CAI-2L2cloud discrimination[J]. Remote Sensing, 2017,9(12):1236.
[16]
Yokota T, Yoshida Y, N E, et al. Global concentrations of CO2 and CH4retrieved from GOSAT:First preliminary results[J]. Sola, 2009,5:160-163.
[17]
He Z, Lei L, Zeng Z-C, et al. Evidence of carbon uptake associated with vegetation greening trends in eastern China[J]. Remote Sensing, 2020,12(4):718.
[18]
何江浩,蔡玉林,秦鹏.二氧化碳的时空变化规律与影响因素分析[J]. 科学通报, 2020,65(1):194-202. He J H, Cai Y L, Qin P. Spatial and temporal variations of carbon dioxide and its influencing factors (in Chinese)[J]. Chin Sci Bull, 2020,65(1):194-202.
[19]
Hakkarainen J, Ialongo I, Maksyutov S, et al. Analysis of four years of global XCO2 anomalies as seen by orbiting carbon observatory-2[J]. Remote Sensing, 2019,11(7):850.
[20]
Crisp D, Fisher B M, O'Dell C, et al. The ACOS CO2 retrieval algorithm-part II:global XCO2 data characterization[J]. Atmospheric Measurement Techniques, 2012,5(4):687-707.
[21]
O'dell C W, Eldering A, Wennberg P O, et al. Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version & ACOS algorithm[J]. Atmospheric Measurement Techniques, 2018,11(12):6539-6576.
[22]
张丽丽,赵明伟,赵娜,等.基于OCO-2卫星观测模拟高精度XCO2的空间分布[J]. 地球信息科学学报, 2018,20(9):1316-1326. Zhang L L, Zhao M W, Zhao N, et al. Modeling the spatial distribution of XCO2 with high accuracy based on OCO-2's observations[J]. Journal of Geo-information Science, 2018,20(9):1316-1326.
[23]
吴长江,雷莉萍,曾招城.不同卫星反演的大气CO2浓度差异时空特征分析[J]. 中国科学院大学学报, 2019,36(3):331-337. Wu C J, Lei L P, Zeng Z C. Spatio-temporal analysis of differences among atmospheric CO2 concentrations retrieved from different satellite obserbvations[J]. Journal of University of Chinese Academy of Sciences, 2019,36(3):331-337.
[24]
Sheng M, Lei L, Zeng Z C, et al. Global land 1mapping dataset of XCO2 from satellite observations of GOSAT and OCO-2 from 2009 to 2020[J]. Big Earth Data, 2022:1-21.
[25]
Sheng M, Lei L, Zeng Z C, et al. Detecting the Responses of CO2 Column Abundances to Anthropogenic Emissions from Satellite Observations of GOSAT and OCO-2[J]. Remote Sensing, 2021, 13(17):3524.
[26]
雷莉萍,钟惠,贺忠华,等.人为排放所引起大气CO2浓度变化的卫星遥感观测评估[J]. 科学通报, 2017,62(25):2941-2950. Lei L P, Zhong H, He Z H, et al. Assessment of atmospheric CO2 concentration enhancement from anthropogenic emissions based on satellite observations (in Chinese)[J]. Chin Sci Bull, 2017,62(25):2941-2950.
[27]
Hakkarainen J, Ialongo I, Tamminen J. Direct space-based observations of anthropogenic CO2 emission areas from OCO-2[J]. Geophysical Research Letters, 2016,42(21):11400-11406.
[28]
Wang S, Zhang Y, Hakkarainen J, et al. Distinguishing Anthropogenic CO2 Emissions From Different Energy Intensive Industrial Sources Using OCO-2 Observations:A Case Study in Northern China[J]. Journal of Geophysical Research:Atmospheres, 2018,123(17):9462-9473.
[29]
Janardanan R, Maksyutov S, Oda T, et al. Comparing GOSAT observations of localized CO2 enhancements by large emitters with inventory-based estimates[J]. Geophysical Research Letters, 2016, 43(7):3486-3493.
[30]
Labzovskii L D, Jeong S J, Parazoo N C. Working towards confident spaceborne monitoring of carbon emissions from cities using Orbiting Carbon Observatory-2[J]. Remote Sensing of Environment, 2019, 233:111359.
[31]
Nassar R, Hill T G, Mclinden C A, et al. Quantifying CO2 emissions from individual power plants from space[J]. Geophysical Research Letters, 2017,44(19):10045-10053.
[32]
Yang S, Lei L, Zeng Z, et al. An assessment of anthropogenic CO2 emissions by satellite-based observations in China[J]. Sensors, 2019,19(5):1118.
[33]
Wang J, Feng L, Palmer P I, et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data[J]. Nature, 2020, 586(7831):720-723.
[34]
王婧,刘毅,杨东旭.探寻我国碳汇分布:从大气CO2探测入手[J]. 科学通报, 2021,66(7):709-710. Wang J, Liu Y, Yang D X. To explore the distribution of carbon sink in China:From atmospheric CO2 measurements[J]. Chinese Science Bulletin, 2021,66(7):709-710.
[35]
杨东旭,刘毅,蔡兆男,等.基于GOSAT反演的中国地区二氧化碳浓度时空分布研究[J]. 大气科学, 2016,40(3):541-550. Yang D X, Liu Y, Cai Z N, et al. The spatial and temporal distribution of carbon dioxide over China based on GOSAT observations[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 2016,40(3):541-550.
[36]
夏玲君,刘立新,李柏贞,等.我国中部地区大气CO2柱浓度时空分布[J]. 中国环境科学, 2018,38(8):2811-2819. Xia L J, Liu L X, Li B Z, et al. Spatial and temporal distribution characteristics of atmospheric CO2 in central China[J]. China Environmental Science, 2018,38(8):2811-2819.
[37]
邓安健,郭海波,胡洁,等.GOSAT卫星数据监测中国大陆上空CO2浓度时空变化特征[J]. 遥感学报, 2020,24(3):319-325. Deng A J, Guo H B, Hu J, et al. Analysis of temporal and distribution characteristic of CO2 concentration over China based on GOSAT satellite data[J]. Journal of Remote Sensing(Chinese), 2020,24(3):319-325.
[38]
莫露,巫兆聪,张熠.中国XCO2时空分布与影响因素分析[J]. 中国环境科学, 2021,41(6):2562-2570. Mo L, Wu ZHAO C, Zhang Y. Spatial and temporal variations of XCO2 in China and its influencing factors analysis[J]. China Environmental Science, 2021,41(6):2562-2570.
[39]
权维俊,姚波,刘伟东,等.我国大气本底观测站创新发展的思考和建议[J]. 科学通报, 2021,66(19):2367-2377. Quan W J, Yao B, Liu W D, et al. The innovative development of atmospheric background stations in China:Thoughts and recommendations[J]. Chinese Science Bulletin, 2021,66(19):2367-2377.
[40]
Minx J C, Lamb W F, Andrew R M, et al. A comprehensive and synthetic dataset for global, regional, and national greenhouse gas emissions by sector 1970~2018 with an extension to 2019[J]. Earth System Science Data, 2021,13(11):5213-5252.
[41]
Reuter M, Buchwitz M, Schneising O, et al. Towards monitoring localized CO2 emissions from space:co-located regional CO2 and NO2 enhancements observed by the OCO-2and S5P satellites[J]. Atmospheric Chemistry and Physics, 2019,19(14):9371-9383.
[42]
Oda T, Maksyutov S. A very high-resolution (1km×1km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights[J]. Atmospheric Chemistry and Physics, 2011,11(2):543-556.
[43]
Bai W G, Zhang X Y, Zhang P. Temporal and spatial distribution of tropospheric CO2 over China based on satellite observations[J]. Chinese Science Bulletin, 2010,55(31):3612-3618.
[44]
Diao A, Shu J, Song C, et al. Global consistency check of AIRS and IASI total CO2 column concentrations using WDCGG ground-based measurements[J]. Frontiers of Earth Science, 2017,11(1):1-10.
[45]
蔡博峰,于嵘.基于遥感的植被长时序趋势特征研究进展及评价[J]. 遥感学报, 2009,13(6):1170-1186. Cai B F, Yu R. Advance and evaluation in the long time series vegetation trends research based on remote sensing[J]. Journal of Remote Sensing, 2009,13(6):1170-1186.
[46]
王少剑,莫惠斌,方创琳.珠江三角洲城市群城市碳排放动态模拟与碳达峰[J]. 科学通报, 2022,67(7):670-684. Wang S J, Mo H B, Fang C L. Carbon emissions dynamic simulation and its peak of cities in the Pearl River Delta Urban Agglomeration (in Chinese)[J]. Chin Sci Bull, 2022,67(7):670-684.
[47]
Liu D, Zhang C, Li Y, et al. The retrieval algorithm for a satellite-borne CO2-sounder:Preliminary results in near infrared band[J]. Optik, 2016,127(20):8613-8620.
[48]
Siabi Z, Falahatkar S, Alavi S J. Spatial distribution of XCO2 using OCO-2 data in growing seasons[J]. Journal of environmental management, 2019,244:110-118.
[49]
Fu Y, Sun W, Luo F, et al. Variation patterns and driving factors of regional atmospheric CO2 anomalies in China[J]. Environmental Science and Pollution Research, 2022,29(13):19390-19403.
[50]
杨元合,石岳,孙文娟,等.中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J]. 中国科学:生命科学, 2022,52(4):534-574. Yang Y H, Shi Y, Sun W J, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Sci China Life Sci, 2022,52(4):534-574.
[51]
李继峰,顾阿伦,张成龙,等."十四五"中国分省经济发展、能源需求与碳排放展望——基于CMRCGE模型的分析[J]. 气候变化研究进展, 2019,15(6):649-659. Li J F, Gu A L, Zhang C L, et al. Economic development, energy demand and carbon emission prospects of China's provinces during the 14th Five Year Plan-an application of CMRCGE model[J]. Climate Change Research, 2019,15(6):649-659.
[52]
蒋含颖,段祎然,张哲,等.基于统计学的中国典型大城市CO2排放达峰研究[J]. 气候变化研究进展, 2021,17(2):131-139. Jiang H Y, Duan Y R, Zhang Z, et al. Study on peak CO2 emissions of typical large cities in China[J]. Climate Change Research, 2021,17(2):131-139.