Recent progress of the global river network patterns and water network constructions
WANG Yi-chu1, NI Jin-ren2
1. College of Water Sciences, Beijing Normal University, Beijing 100875, China; 2. College of Environmental Science and Engineering, Peking University, Beijing 100871, China
Abstract:Under the conditions of uneven spatiotemporal distribution of water resources, unbalanced socioeconomic development and global climate change, water network construction has become an important way to achieve efficient utilization of water resources and promote regional sustainable development in the new era, and thus the key concern has become how to define the scale of water diversion at varying levels of river networks under multiple objectives. This paper reviews the research progress of global river networks in terms of identification and characterization methods, formation mechanism, temporal and spatial distribution and evolution characteristics, analyzes the corresponding basin water endowment and water resource structure characteristics of typical river network patterns, as well as their ecological and environmental impacts. Based on the case study of the relationships between the inter-basin diversion projects and constructions of backbone water networks, the present work prospects the development trend of the ecology-oriented optimization of water system pattern and the construction of backbone water networks.
王易初, 倪晋仁. 全球水系格局与水网构建研究进展[J]. 中国环境科学, 2023, 43(3): 1074-1086.
WANG Yi-chu, NI Jin-ren. Recent progress of the global river network patterns and water network constructions. CHINA ENVIRONMENTAL SCIENCECE, 2023, 43(3): 1074-1086.
Best J. Anthropogenic stresses on the world's big rivers[J]. Nature Geoscience, 2018,12(1):7-21.
[2]
刘怀湘,王兆印.河网形态与环境条件的关系[J]. 清华大学学报(自然科学版), 2008,48(9):1408-1412. Liu HX, Wang ZX. Relationship between river network pattern and environmental condition[J]. Journal of Tsinghua University (Sci & Tech), 2008,48(9):1408-1412.
[3]
倪晋仁,王裕东,钱征寒,等.黄河下游水资源转化结构及其变化规律[J]. 中国科学E辑:技术科学, 2004,34(S1):103-116. Ni J R, Wang Y D, Qian Z H, et al. Water resources transformation structure and its variation in the lower reaches of the Yellow River[J]. Science in China Ser. E:Technological Sciences, 2004,34(S1):103-116.
[4]
Milly P C D, Dunne K A, Vecchia A V. Global pattern of trends in streamflow and water availability in a changing climate[J]. Nature, 2005,438(7066):347-350.
[5]
Müller Schmied H, Cáceres D, Eisner S, et al. The global water resources and use model WaterGAP v2.2d:model description and evaluation[J]. Geoscientific Model Development, 2021,14(2):1037-1079.
[6]
Lin D, Hanscom L, Martindill J. Working guidebook to the national footprint and biocapacity accounts[M]. Oakland:Global Footprint Network, 2019.
[7]
Schmadel N M, Harvey J W, Alexander R B, et al. Thresholds of lake and reservoir connectivity in river networks control nitrogen removal[J]. Nat. Commun., 2018,9:2779.
[8]
McGuire K J, Torgersen C E, Likens G E, et al. Network analysis reveals multiscale controls on stream water chemistry[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(19):7030-7035.
[9]
Koning A A, Perales K M, Fluet-Chouinard E, et al. A network of grassroots reserves protects tropical river fish diversity[J]. Nature, 2020,588(7839):631-635.
[10]
Fang Y, Ceola S, Paik K, et al. Globally universal fractal pattern of human settlements in river networks[J]. Earth's Future, 2018,6(8):1134-1145.
[11]
Callaghan J F O, Mark D M. The extraction of drainage networks from digital elevation data[J]. Computer Vision Graphics and Image Processing, 28(3):323-344.
[12]
Wu T, Li J, Li T, et al. High-efficient extraction of drainage networks from digital elevation models constrained by enhanced flow enforcement from known river maps[J]. Geomorphology, 2019,340:184-201.
[13]
Lindsay J B. Efficient hybrid breaching-filling sink removal methods for flow path enforcement in digital elevation models[J]. Hydrological Processes, 2016,30(6):846-857.
[14]
Shin S, Paik K. An improved method for single flow direction calculation in grid digital elevation models[J]. Hydrological Processes, 2017,31(8):1650-1661.
[15]
Wang Y, Liu D, Liang E, et al. Structural characteristics of endorheic rivers in the Tarim Basin[J]. Remote Sensing, 2022,14:4502.
[16]
Wang Y, Ni J, Yue Y, et al. Solving the mystery of vanishing rivers in China[J]. National Science Review, 2019,6(6):1239-1246.
[17]
薛源,覃超,吴保生,等.基于多源国产高分辨率遥感影像的山区河流信息自动提取[J]. 清华大学学报(自然科学版), 2023,63(1):134-145. Xu Y, Tan C, Wu B S, et al. Automatic extraction of mountain river information from multiple Chinese high resolution remote sensing satellite images[J]. Journal of Tsinghua University (Sci & Technol), 2023,63(1):134-145.
[18]
Yamazaki D, Ikeshima D, Sosa J, et al. MERIT Hydro:A High-Resolution Global Hydrography Map Based on Latest Topography Dataset[J]. Water Resources Research, 2019,55(6):5053-5073.
[19]
Lehner B, Grill G. Global river hydrography and network routing:baseline data and new approaches to study the world's large river systems[J]. Hydrological Processes, 2013,27(15):2171-2186.
[20]
Giachetta E, Willett S D. A global dataset of river network geometry[J]. Scientific Data, 2018,5:180127.
[21]
Andreadis K M, Schumann G J P, Pavelsky T. A simple global river bankfull width and depth database[J]. Water Resources Research, 2013,49(10):7164-7168.
[22]
Allen G H P, Tamlin M. Global extent of rivers and streams[J]. Science, 2018,361(6402):585-588.
[23]
Cohen S, Wan T, Islam M T, et al. Global river slope:A new geospatial dataset and global-scale analysis[J]. Journal of Hydrology, 2018,563:1057-1067.
[24]
Yan D, Li C, Zhang X, et al. A data set of global river networks and corresponding water resources zones divisions v2[J]. Scientific Data, 2022,9(1):770.
[25]
Lehner B, Liermann C R, Revenga C, et al. High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management[J]. Frontiers in Ecology and the Environment, 2011, 9(9):494-502.
[26]
Messager M L, Lehner B, Cockburn C, et al. Global prevalence of non-perennial rivers and streams[J]. Nature, 2021,594(7863):391-397.
[27]
Grill G, Lehner B, Thieme M, et al. Mapping the world's free-flowing rivers[J]. Nature, 2019,569(7755):215-221.
[28]
Perron J T, Richardson P W, Ferrier K L, et al. The root of branching river networks[J]. Nature, 2012,492(7427):100-103.
[29]
Ma C, Shen Y, Bearup D, et al. Spatial variation in branch size promotes metapopulation persistence in dendritic river networks[J]. Freshwater Biology, 2020,65(3):426-434.
[30]
Larsen S, Comte L, Filipa Filipe A, et al. The geography of metapopulation synchrony in dendritic river networks[J]. Ecology Letters, 2021,24(4):791-801.
[31]
Terui A, Ishiyama N, Urabe H, et al. Metapopulation stability in branching river networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018,115(26):E5963-E5969.
[32]
Holt G, Chesson P. The role of branching in the maintenance of diversity in watersheds[J]. Freshwater Science, 2018,37:712-730.
[33]
Chiu M C, Li B, Nukazawa K, et al. Branching networks can have opposing influences on genetic variation in riverine metapopulations[J]. Diversity and Distributions, 2020,26(12):1813-1824.
[34]
Paz-Vinas I, Blanchet S. Dendritic connectivity shapes spatial patterns of genetic diversity:a simulation-based study[J]. Journal of Evolutionary Biology, 2015,28(4):986-994.
[35]
Tonkin J D, Altermatt F, Finn D S, et al. The role of dispersal in river network metacommunities:Patterns, processes, and pathways[J]. Freshwater Biology, 2017,63(1):141-163.
[36]
Shreve R L. Statistical law of stream numbers[J]. Journal of Geology, 1966,74(1):17-37.
[37]
Strahler A N. Quantitative analysis of watershed geomorphology[J]. Transactions, American Geophysical Union, 1957,38(6):913-920.
[38]
Strahler A N. Hypsometric (area-altitude) analysis of erosional topography[J]. Geological Society of America Bulletin, 1952,63(11):1117-1142.
[39]
Horton R E. Erosional development of streams and their drainage basins-hydrophysical approach to quantitative morphology[J]. Geological Society of America Bulletin, 1945,56(3):275-370.
[40]
Zanardo S, Zaliapin I, Foufoula-Georgiou E. Are American rivers Tokunaga self-similar? New results on fluvial network topology and its climatic dependence[J]. Journal of Geophysical Research:Earth Surface, 2013,118(1):166-183.
[41]
Vörösmarty C J, Fekete B M, Meybeck M, et al. Global system of rivers:Its role in organizing continental land mass and defining land-to-ocean linkages[J]. Global Biogeochemical Cycles, 2000,14(2):599-621.
[42]
Horton R E. Drainage-basin characteristics[J]. Transactions-American Geophysical Union, 1932,13:350-361.
[43]
张禹,傅旭东,王光谦.黄河中游黄土覆盖区河流入汇角的特征研究[J]. 应用基础与工程科学学报, 2020,28(3):495-504. Zhang Y, Fu X D, Wang G Q. The Junction Angle Features of Loess-covered River Networks in the Middle Reach of Yellow River[J]. Journal of Basic Science and Engineering, 2020,28(3):495-504.
[44]
Niemann J D, Hasbargen L E. A comparison of experimental and natural drainage basin morphology across a range of scales[J]. Journal of Geophysical Research:Earth Surface, 2005,110:F04017.
[45]
Lin P, Pan M, Allen G H, et al. Global Estimates of Reach-Level Bankfull River Width Leveraging Big Data Geospatial Analysis[J]. Geophysical Research Letters, 2020,47:e2019GL086405.
[46]
Allen G H, Pavelsky T M. Patterns of river width and surface area revealed by the satellite-derived North American River Width data set[J]. Geophysical Research Letters, 2015,42(2):395-402.
[47]
Chen X, Wang Y, Ni J. Structural characteristics of river networks and their relations to basin factors in the Yangtze and Yellow River basins[J]. Science China Technological Sciences, 2019,62(11):1885-1895.
[48]
Dorsaz J-M, Gironás J, Escauriaza C, et al. The geomorphometry of endorheic drainage basins:implications for interpreting and modelling their evolution[J]. Earth Surface Processes and Landforms, 2013, 38(15):1881-1896.
[49]
刘乐,王兆印,余国安,等.青藏高原河网统计规律及高原抬升的影响[J]. 清华大学学报(自然科学版), 2015,55(9):964-970. Liu L, Wang Z Y, Yu G A, et al. Statistical features of the drainage networks in the Qinghai-Tebet Plateau and the effect of the uplift[J]. Journal of Tsinghua University (Sci & Technol), 2015,55(9):964-970.
[50]
石艳玲,李德威,刘德民.雅鲁藏布江水系反转问题的探讨[J]. 地质科技情报, 2010,29(4):32-42. Shi Y L, Li D W, Liu D M. Preliminary study on the inversion of Yalungzangbo River[J]. Geological Science and Technology Information, 2010,29(4):32-42.
[51]
李志威,余国安,徐梦珍,等.青藏高原河流演变研究进展[J]. 水科学进展, 2016,27(4):617-628. Li Z W, Yu G A, Xu M Z, et al. Progress in studies on river morphodynamics in Qinghai-Tibet Plateau[J]. Advances in Water Science, 2016,27(4):617-628.
[52]
覃超,吴保生,汪舸,等.青藏高原山区河流广义河相关系与多频率沿程河相关系[J]. 水利学报, 2022,53(2):176-187. Tan C, Wu B S, Wang K, et al. Generalized hydraulic geometry and multi-frequency downstream hydraulic geometry of mountain rivers originated from the Qinghai-Tibet Plateau[J]. Journal of Hydraulic Engineering, 2022,53(2):176-187.
[53]
Swartz J M, Cardenas B T, Mohrig D, et al. Tributary channel networks formed by depositional processes[J]. Nature Geoscience, 2022,15(3):216-221.
[54]
张丽,傅旭东,王光谦,等.黄河中游典型河网的结构自相似性[J]. 清华大学学报(自然科学版), 2013,53(1):24-28. Zhang L, Fu X D, Wang G Q, et al. Structural self-similarity of river networks in the Middle Yellow River basin[J]. Journal of Tsinghua University (Sci & Technol), 2013,53(1):24-28.
[55]
Stronga C M, Mudda S M. Explaining the climate sensitivity of junction geometry in global river networks[J]. Proceedings of the National Academy of Sciences, 2022,119:e2211942119.
[56]
Hooshyar M, Singh A, Wang D. Hydrologic controls on junction angle of river networks[J]. Water Resources Research, 2017,53(5):4073-4083.
[57]
Allen G H, Pavelsky T M, Barefoot E A, et al. Similarity of stream width distributions across headwater systems[J]. Nature Communications, 2018,9:610.
[58]
Qin C, Wu B, Wang Y, et al. Dynamic variability of at-a-station hydraulic-geometry for mountain rivers in the southeast Qinghai-Tibet Plateau:The cases of Yalong River and upper Jinsha River[J]. Catena, 2020,194:104723.
[59]
Gómez-Gener L, Lupon A, Laudon H, et al. Drought alters the biogeochemistry of boreal stream networks[J]. Nature Communications, 2020,11(1):1795.
[60]
Marinos R E, Van Meter K J, Basu N B. Is the river a chemostat?:Scale versus land use controls on nitrate concentration-discharge dynamics in the Upper Mississippi River Basin[J]. Geophysical Research Letters, 2020,47(16):e2020GL087051.
[61]
Raymond P A, Hartmann J, Lauerwald R, et al. Global carbon dioxide emissions from inland waters[J]. Nature, 2013,503(7476):355-359.
[62]
Zimmer M A, Burgin A J, Kaiser K, et al. The unknown biogeochemical impacts of drying rivers and streams[J]. Nature Communications, 2022,13(1):7213.
[63]
Jankowski K J, Schindler D E. Watershed geomorphology modifies the sensitivity of aquatic ecosystem metabolism to temperature[J]. Scientific Reports, 2019,9(1):17619.
[64]
倪晋仁,马蔼乃.河流动力地貌学[C]//北京:北京大学出版社,1998. Ni JR, Ma AN. River Hydrodynamic geomorphology[C]//Beijing:Beijing University Press, 1998.
[65]
Rodríguez-Iturbe I, Rinaldo A, Rigon R, et al. Energy dissipation, runoff production, and the three-dimensional structure of river basins[J]. Water Resources Research, 1992,28:1095-1103.
[66]
Hergarten S, Neugebauer H J. Self-organized critical drainage networks[J]. Physical Review Letters, 2001,86(12):2689-2692.
[67]
Forte A M, Whipple K X. Criteria and tools for determining drainage divide stability[J]. Earth and Planetary Science Letters, 2018,493:102-117.
[68]
Carraro L, Altermatt F. Optimal channel networks accurately model ecologically-relevant geomorphological features of branching river networks[J]. Communications Earth & Environment, 2022,3(1):125.
[69]
田明中,程捷.第四纪地质学与地貌学[C]//北京:地质出版社, 2009. Tian M Z, Cheng J. Quaternary geology and geomorphology[C]//Beijing:Geological Press, 2009.
[70]
Ielpi A, Lapôtre M G A, Gibling M R, et al. The impact of vegetation on meandering rivers[J]. Nature Reviews Earth & Environment, 2022,3(3):165-178.
[71]
Sangireddy H, Carothers R A, Stark C P, et al. Controls of climate, topography, vegetation, and lithology on drainage density extracted from high resolution topography data[J]. Journal of Hydrology, 2016,537:271-282.
[72]
冉启华,刘燕,王丰,等.变坡度变雨强下坡面流阻力特性时空分布[J]. 浙江大学学报(工学版), 2018,52(2):297-306. Ran Q H, Liu Y, Wang F, et al. Temporal and spatial distribution of oveland flow resistances characteristics on varying slope and rainfall intensity[J]. Journal of Zhejiang University (Engineering Science), 2018,52(2):297-306.
[73]
Ranjbar S, Hooshyar M, Singh A, et al. Quantifying climatic controls on river network branching structure across scales[J]. Water Resources Research, 2018,54(10):7347-7360.
[74]
Godard V, Bourles D L, Spinabella F, et al. Dominance of tectonics over climate in Himalayan denudation[J]. Geology, 2014,42(3):243-246.
[75]
Dolan F, Lamontagne J, Link R, et al. Evaluating the economic impact of water scarcity in a changing world[J]. Nature Communications, 2021,12(1):1915.
[76]
Li L, Ni J, Chang F, et al. Global trends in water and sediment fluxes of the world's large rivers[J]. Sci Bull (Beijing), 2020,65(1):62-69.
[77]
Greve P, Kahil T, Mochizuki J, et al. Global assessment of water challenges under uncertainty in water scarcity projections[J]. Nature Sustainability, 2018,1(9):486-494.
[78]
Modi P, Hanasaki N, Yamazaki D, et al. Sensitivity of subregional distribution of socioeconomic conditions to the global assessment of water scarcity[J]. Communications Earth & Environment, 2022,3(1):144.
[79]
Widder S, Besemer K, Singer G A, et al. Fluvial network organization imprints on microbial co-occurrence networks[J]. Proceedings of the National Academy of Sciences of the United States of America 2014,111(35):12799-12804.
[80]
Sklar L S, Dietrich W E, Foufoula-Georgiou E, et al. Do gravel bed river size distributions record channel network structure?[J]. Water Resources Research, 2006,42(6):W06D18.
[81]
Hette-Tronquart N, Belliard J, Tales E, et al. Stable isotopes reveal food web modifications along the upstream-downstream gradient of a temperate stream[J]. Aquatic Sciences, 2015,78(2):255-265.
[82]
Vannote R L, Minshall G W, Cummins K W, et al. The river continuum concept[J]. Canadian journal of fisheries and aquatic sciences, 1980,37(1):130-137.
[83]
倪晋仁,高晓薇.河流综合分类及其生态特征分析Ⅰ:方法[J]. 水利学报, 2011,42(9):1009-1016. Ni J R, Gao X W. Comprehensive approach for classification of river systems and identification of ecological characteristics I. Methodology[J]. Journal of Hydraulic Engineering, 2011,42(9):1009-1016.
[84]
倪晋仁,高晓薇.河流综合分类及其生态特征分析Ⅱ:应用[J]. 水利学报, 2011,42(10):1177-1184. Ni J R, Gao X W. Comprehensive approach for classification of river systems and identification of ecological characteristics II. Applications[J]. Journal of Hydraulic Engineering, 2011,42(10):1177-1184.
[85]
Besemer K, Singer G, Quince C, et al. Headwaters are critical reservoirs of microbial diversity for fluvial networks[J]. Proceedings of the Royal Society B-Biological Sciences, 2013,280(1771):20131760.
[86]
Wang Y C, Gao X W, Li T J, et al. Geocode-based aquatic habitats in hierarchical system of the Yellow River Basin[J]. Journal of Environmental Informatics, 2018,32(2):69-81.
[87]
Veldkamp T I E, Wada Y, Aerts J C J H, et al. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century[J]. Nature Communications, 2017,8(1):15697.
[88]
Pekel J F, Cottam A, Gorelick N, et al. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 2016,540(7633):418-422.
[89]
Gleeson T, Wada Y, Bierkens M F, et al. Water balance of global aquifers revealed by groundwater footprint[J]. Nature, 2012,488(7410):197-200.
[90]
Cauvy-Fraunie S, Dangles O. A global synthesis of biodiversity responses to glacier retreat[J]. Nature Ecology Evolution, 2019,3(12):1675-1685.
[91]
Jacobsen D, Milner A M, Brown L E, et al. Biodiversity under threat in glacier-fed river systems[J]. Nature Climate Change, 2012,2(5):361-364.
[92]
Mekonnen M M, Hoekstra A Y. Blue water footprint linked to national consumption and international trade is unsustainable[J]. Nature Food, 2020,1(12):792-800.
[93]
Liu J, Yang H, Gosling S N, et al. Water scarcity assessments in the past, present, and future[J]. Earth's Future, 2017,5(6):545-559.
[94]
谷丽雅,侯小虎,张林若.浅谈国外跨流域调水工程现状、机遇和挑战[J]. 中国水利, 2021,(11):61-62. Gu L Y, Hou X H, Zhang L R. Current status of global inter-basin water transfer projects and its opportunities and challenges[J]. China Water Resources, 2021,(11):61-62.
[95]
Kummu M, Guillaume J H, de Moel H, et al. The world's road to water scarcity:shortage and stress in the 20th century and pathways towards sustainability[J]. Scientific Reports, 2016,6:38495.
[96]
Alcamo J, Henrichs T. Critical regions:A model-based estimation of world water resources sensitive to global changes[J]. Aquatic Sciences, 2002,64:352-362.
[97]
Shumilova O, Tockner K, Thieme M, et al. Global water transfer megaprojects:A potential solution for the water-food-energy nexus?[J]. Frontiers in Environmental Science, 2018,6:38495.
[98]
Constantine J A, Dunne T, Ahmed J, et al. Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin[J]. Nature Geoscience, 2014,7(12):899-903.
[99]
Eiselen E. The central valley project:1947[J]. Economic Geography, 2016,23(1):22.
[100]
Grigg N S. Large-scale water development in the United States:TVA and the California State Water Project[J]. International Journal of Water Resources Development, 2021,39(1):70-88.
[101]
Guan G, Clemmens A J, Kacerek T F, et al. Applying water-level difference control to Central Arizona Project[J]. Journal of Irrigation and Drainage Engineering, 2011,137(12):747-753.
[102]
欧阳琪,张远东.加利福尼亚州水资源调配工程[J]. 南水北调与水利科技, 2006,4(6):1-12. Ou Y Q, Zhang Y D. Water transfer projects in California[J]. North Water Transfer and Water Science & Technology, 2006,4(6):1-12.
[103]
Olsson P, Folke C, Berkes F. Adaptive comanagement for building resilience in social-ecological systems[J]. Environmental Management, 2004, 34(1):75-90.
[104]
Shay C T, Shay J M, Johnston B. Evaluating the impacts of a hydro-electric development in northern Manitoba, Canada[J]. Environmetrics, 1991,2(2):217-226.
[105]
Mundie J H, Bell-Irving R. Predictability of the consequences of the kemano hydroelectric proposal for natural salmon populations[J]. Canadian Water Resources Journal, 1986,11(1):14-25.
[106]
Fisher W F. Diverting water:Revisiting the Sardar Sarovar Project[J]. International Journal of Water Resources Development, 2001,17(3):303-314.
[107]
Kumar R, Shukla N, Nigam D P, et al. Modernizing Sarda Sahayak canal system:The Masscote approach[J]. Irrigation and Drainage, 2010,59(1):53-75.
[108]
Sharma K D. Indira Gandhi Nahar Pariyojana-lessons learnt from past management practices in the Indian arid zone[J]. IAHS-AISH publication, 2001:49-55.
[109]
Gupta J, van der Zaag P. Interbasin water transfers and integrated water resources management:Where engineering, science and politics interlock[J]. Physics and Chemistry of the Earth, 2008, 33(1/2):28-40.
[110]
Poff N L, Matthews J H. Environmental flows in the Anthropocence:Past progress and future prospects[J]. Current Opinion in Environmental Sustainability, 2013,5(6):667-675.
[111]
Sun F, Yang Z, Huang Z. Challenges and Solutions of Urban Hydrology in Beijing[J]. Water Resources Management, 2014,28(11):3377-3389.
[112]
Rose K A, Huang H, Justic D, et al. Simulating fish movement responses to and potential salinity stress from large-scale river diversions[J]. Marine and Coastal Fisheries, 2014,6(1):43-61.
[113]
Gohari A, Eslamian S, Mirchi A, et al. Water transfer as a solution to water shortage:A fix that can Backfire[J]. Journal of Hydrology, 2013,491:23-39.
[114]
Liu J, Zang C, Tian S, et al. Water conservancy projects in China:Achievements, challenges, and way forward[J]. Global Environmental Change, 2013,23(3):633-643.
[115]
刘璐.对国家骨干水网的认识[J]. 水利发展研究, 2021,12:22-25. Liu L. Knowledge on the national water network[J]. 2021,12:22-25.
[116]
Wang Y C, Ni J R, Yue Y, et al, Solving the mystery of vanishing rivers in China[J]. National Science Review, 2019,6:1239-1246.
[117]
徐宗学,庞博,冷罗生.河湖水系连通工程与国家水网建设研究[J].南水北调与水利科技, 2022,20(4):757-764. Xu Z X, Pang B, Leng L S. Research on the construction of river-lake system connectivity and national water network[J]. South-to-North Water Transfers and Water Science & Technology, 2022,20(4):757-764.
[118]
赵勇,王浩,马浩,等.中国"双T"型水网经济格局建设构想[J].水利学报, 2022,53(11):1271-1279,1290. Wang Y C, Ni J R, Yue Y, et al. Conception of China's "Double T"-shaped water network economic pattern construction[J]. Journal of Hydraulic Engineering, 2022,53(11):1271-1279,1290.
[119]
许凤冉,阮本清,张春玲,等.跨流域调水生态补偿研究进展与关键技术[J]. 水利经济, 2022,40(4):34-40. Xu F R, Ruan B Q, Zhang C L, et al. Research progress and key technologies of ecological compensation for inter-basin water transfer projects. Journal of Economics of Water Resources, 2022,40(4):34-40.