A review on the mechanism of adding iron and iron compounds to control volatile sulfur compounds during anaerobic digestion of sludge
JIAO Ling-jie1, LI Yong-mei1, WEI Hai-juan2, CHEN Guang2
1. State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; 2. Shanghai Chengtou Wastewater Treatment Co., Ltd., Shanghai 201203, China
Abstract:Anaerobic digestion is an effective method for sludge reduction and resource recovery. However, volatile sulfur compounds (VSCs) formed during the anaerobic digestion of sludge have caused many problems, such as reducing digestion efficiency, causing equipment corrosion, and damaging human health. In-situ sulfide control technologies like using iron or iron compounds are effective in controlling VSCs emissions. To deeply understand the role of iron in the anaerobic digestion process, this review summarized the formation mechanism of VSCs and focuses on the mechanism of controlling VSCs by adding iron salts, scrap iron, and iron ore. The practical applicability of adding iron and iron compounds to control VSCs in anaerobic digestion is evaluated, and the future research direction is prospected. This review provides ideas and strategies for cost-effective in situ VSCs control during anaerobic digestion processes.
焦玲洁, 李咏梅, 魏海娟, 陈广. 铁及其化合物控制污泥厌氧消化VSCs机理研究进展[J]. 中国环境科学, 2023, 43(7): 3454-3463.
JIAO Ling-jie, LI Yong-mei, WEI Hai-juan, CHEN Guang. A review on the mechanism of adding iron and iron compounds to control volatile sulfur compounds during anaerobic digestion of sludge. CHINA ENVIRONMENTAL SCIENCECE, 2023, 43(7): 3454-3463.
Luo J, Zhang Q, Zhao J, et al. Potential influences of exogenous pollutants occurred in waste activated sludge on anaerobic digestion: A review [J]. J Hazard Mater, 2020,383:121176.
[2]
Rulkens W. Sewage sludge as a biomass resource for the production of energy: Overview and assessment of the various options [J]. Energy and Fuels, 2008,22(1):9-15.
[3]
Yang G, Zhang G, Wang H. Current state of sludge production, management, treatment and disposal in China [J]. Water Research, 2015,78:60-73.
[4]
Higgins M J, Chen Y-C, Yarosz D P, et al. Cycling of Volatile Organic Sulfur Compounds in Anaerobically Digested Biosolids and its Implications for Odors [J]. Water Environment Research, 2006,78(3): 243-252.
[5]
东 东,赵 珊,郭学彬,等.典型污泥高级厌氧消化工艺中恶臭物质的分布特征 [J]. 中国给水排水, 2021,37(21):7-12. Dong D, Zhao S, Guo X B, et al. Distribution characteristics of odorants in typical sludge advanced anaerobic digestion process [J]. China Water & Wastewater, 2021,37(21):7-12.
[6]
Higgins M, Murthy S, Toffey W, et al. Factors affecting odor production in Philadelphia Water Department Biosolids [J]. Proceedings of the Water Environment Federation, 2002,2002:299-321.
[7]
孙茗歆,张洪海,马乾耀,等.春季东海挥发性有机硫化物(VSCs)分布的研究 [J]. 中国环境科学, 2018,38(4):1490-1498. Sun M X, Zhang H H, Ma Q Y, et al. Distribution of volatile sulfur compounds in the East China Sea during spring [J]. China Environmental Science, 2018,38(4):1490-1498.
[8]
Rasi S, Veijanen A, Rintala J. Trace compounds of biogas from different biogas production plants [J]. Energy, 2007,32(8):1375-1380.
[9]
Chen J L, Ortiz R, Steele T W J, et al. Toxicants inhibiting anaerobic digestion: A review [J]. Biotechnology Advances, 2014,32(8):1523-1534.
[10]
陈 洁,王彩霞,王 倩,等.废铁屑缓解硫化物抑制厌氧氨氧化脱氮性能的研究 [J]. 中国环境科学, 2023,43(4):1636-1645. Chen J, Wang C X, Wang Q, et al. Performance of iron scrap to alleviate the inhibition of sulfides on denitrification by anaerobic ammoxidation [J]. China Environmental Science, 2023,43(4):1636-1645.
[11]
Vu H P, Nguyen L N, Wang Q, et al. Hydrogen sulphide management in anaerobic digestion: A critical review on input control, process regulation, and post-treatment [J]. Bioresource Technology, 2022, 346:126634.
[12]
Du W, Parker W. Characterization of Sulfur in Raw and Anaerobically Digested Municipal Wastewater Treatment Sludges [J]. Water Environment Research, 2013,85(2):124-132.
[13]
陈思思,董 滨,徐祖信.矿山生态修复及市政污泥稳定化产物应用潜力 [J]. 中国环境科学, 2022,42(12):5734-5747. Chen S S, Dong B, Xu Z X. Mine land ecological restoration and application potential of sewage sludge stabilization products [J]. China Environmental Science, 2022,42(12):5734-5747.
[14]
Ros A, Lillo-Ródenas M A, Canals-Batlle C, et al. A New Generation of Sludge-Based Adsorbents for H2S Abatement at Room Temperature [J]. Environmental Science & Technology, 2007,41(12):4375-4381.
[15]
Sommers L, Tabatabai M, Nelson D. Forms of sulfur in sewage sludge [R]. Journal of Environmental Quality, 1977,6:42-46.
[16]
Gostelow P, Parsons S A, Stuetz R M. Odour measurements for sewage treatment works [J]. Water Research, 2001,35(3):579-597.
[17]
Yan J, Yang J, Liu Z. SH Radical: The Key Intermediate in Sulfur Transformation during Thermal Processing of Coal [J]. Environmental Science & Technology, 2005,39(13):5043-5051.
[18]
成 珊.污泥热干化过程中有机硫、氮转化特性及释放规律研究 [J]. 武汉:华中科技大学, 2018. Cheng S. Organic sulfur / nitrogen transformation and release characteristics during thermal drying process of sewage sludge [J]. Wuhan:Huazhong University of Science & Technology, 2018.
[19]
Hao T-w, Xiang P-y, Mackey H R, et al. A review of biological sulfate conversions in wastewater treatment [J]. Water Research, 2014,65:1-21.
[20]
Yang G, Zhang G, Zhuan R, et al. Transformations, inhibition and inhibition control methods of sulfur in sludge anaerobic digestion: a review [J]. Current Organic Chemistry, 2016,20(26):2780-2789.
[21]
段妮娜.污泥厌氧消化系统中硫转化的主要途径及影响因素 [J]. 环境工程, 2017,35(12):129-133,148. Duan N N. Main approaches and influencin factors of sulfur in sludge anaerobic digestion system [J]. Environmental Engineering, 2017, 35(12):129-133,148.
[22]
Lei X, Wang Z, Wang K. A wideband low power low phase noise dual-modulus prescaler [J]. Journal of Semiconductors, 2011,32(2): 025011.
[23]
Lopes S I C, Lens P N L. 6.32-Anaerobic Treatment of Organic Sulfate-Rich Wastewaters [M]. Comprehensive Biotechnology (Second Edition), 2011,6:399-418.
[24]
Koschorreck M. Microbial sulphate reduction at a low pH [J]. FEMS Microbiol Ecol, 2008,64(3):329-342.
[25]
Zhang L, De Schryver P, De Gusseme B, et al. Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: A review [J]. Water Research, 2008,42(1):1-12.
[26]
赵剑强,未浚黄.厌氧消化中COD、SO42-、S2-及Fe2+之间的相互作用 [J]. 化工给排水设计, 1992,3:25-28. Zhao J Q, Wei J H. Interactions between COD, SO42-, S2- and Fe2+ in anaerobic digestion [J]. Industrial Water & Wastewater, 1992,3:25-28.
[27]
Guang Y, Guangming Z, Run Z, et al. Transformations, Inhibition and Inhibition Control Methods of Sulfur in Sludge Anaerobic Digestion: A Review [J]. Current Organic Chemistry, 2016,20(26):2780-2789.
[28]
Higgins M J, Chen Y C, Yarosz D P, et al. Cycling of volatile organic sulfur compounds in anaerobically digested biosolids and its implications for odors [J]. Water Environment Research, 2006,78(3): 243-252.
[29]
Dignac M F, Urbain V, Rybacki D, et al. Chemical description of extracellular polymers: Implication on activated sludge floc structure [J]. Water Science and Technology, 1998,38(8):45-53.
[30]
Higgins M J, Novak J T. Characterization of Exocellular Protein and Its Role in Bioflocculation [J]. Journal of Environmental Engineering, 1997,123(5):479-485.
[31]
Higgins M J, Yarosz D P, Chen Y-C, et al. Mechanisms of volatile sulfur compound and odor production in digested biosolids [J]. Proceedings of the Water Environment Federation, 2003,2003(1):993-1006.
[32]
Lomans B P, van der Drift C, Pol A, et al. Microbial cycling of volatile organic sulfur compounds [J]. Cellular and Molecular Life Sciences CMLS, 2002,59(4):575-588.
[33]
Amin F R, Khalid H, El-Mashad H M, et al. Functions of bacteria and archaea participating in the bioconversion of organic waste for methane production [J]. Science of The Total Environment, 2021, 763:143007.
[34]
Higgins M J, Chen Y C, Yarosz D P, et al. Cycling of volatile organic sulfur compounds in anaerobically digested biosolids and its implications for odors [J]. Water Environ Res, 2006,78(3):243-252.
[35]
Chen Y, Higgins M J, Maas N A, et al. Roles of methanogens on volatile organic sulfur compound production in anaerobically digested wastewater biosolids [J]. Water Sci Technol, 2005,52(1/2):67-72.
[36]
赵茹涵,杨 庆,彭赵旭,等.污水处理厂挥发性硫化物释放特征与风险评价 [J]. 中国环境科学, 2021,41(12):5570-5577. Zhao R H, Yang Q, Peng Z X, et al. Release characteristics and risk evaluation of VSCs in municipal wastewater treatment plants [J]. China Environmental Science, 2021,41(12):5570-5577.
[37]
Cheng X, Wodarczyk M, Lendzinski R, et al. Control of DMSO in wastewater to prevent DMS nuisance odors [J]. Water research, 2009, 43(12):2989-2998.
[38]
Frølund B, Palmgren R, Keiding K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin [J]. Water Research, 1996,30(8):1749-1758.
[39]
Persson S, Edlund M B, Claesson R, et al. The formation of hydrogen sulfide and methyl mercaptan by oral bacteria [J]. Oral microbiology and immunology, 1990,5(4):195-201.
[40]
Chin H-W, Lindsay R C. Ascorbate and transition-metal mediation of methanethiol oxidation to dimethyl disulfide and dimethyl trisulfide [J]. Food Chemistry, 1994,49(4):387-392.
[41]
Forbes R H, Adams G, Witherspoon J, et al. Impacts of in-plant operational parameters on biosolids odor quality: preliminary results of WERF phase 2study; proceedings of the Residuals and Biosolids Conference 2003, F, 2003 [C]. Water Environment Federation.
[42]
Lomans B P, Op den Camp H J, Pol A, et al. Anaerobic versus aerobic degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments [J]. Applied and environmental microbiology, 1999,65(2): 438-443.
[43]
Visscher P T, Taylor B F. A new mechanism for the aerobic catabolism of dimethyl sulfide [J]. Applied and environmental microbiology, 1993,59(11):3784-3789.
[44]
Lomans Bart P, Op den Camp Huub J M, Pol A, et al. Role of Methanogens and Other Bacteria in Degradation of Dimethyl Sulfide and Methanethiol in Anoxic Freshwater Sediments [J]. Applied and Environmental Microbiology, 1999,65(5):2116-2121.
[45]
Kiene R P, Oremland R S, Catena A, et al. Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen [J]. Applied and environmental microbiology, 1986,52(5):1037-1045.
[46]
Park C M, Novak J T. The effect of direct addition of iron(III) on anaerobic digestion efficiency and odor causing compounds [J]. Water Science and Technology, 2013,68(11):2391-2396.
[47]
Nägele H J, Steinbrenner J, Hermanns G, et al. Innovative additives for chemical desulphurisation in biogas processes: A comparative study on iron compound products [J]. Biochemical Engineering Journal, 2017, 121:181-187.
[48]
王素春.利用Fe(Ⅲ)抑制污泥厌氧消化中硫化氢形成的研究 [J]. 西安:西安建筑科技大学, 2013. Wang S C. Inhibiting the formation of H2S in primary sludge digestion using wastes containing Fe(III) [J]. Xi'an: Xi’an University of Architecture and Technology, 2013.
[49]
张 玲,郑西来,佘宗莲,等.FeCl3及AlCl3对中温厌氧消化系统产生H2S的抑制作用 [J]. 环境工程学报, 2015,9(12):5907-5914. Zhang L, Zheng X L, She Z L, et al. Inhibition effect of FeCl3 and AlCl3 on H2S from sludge mesotherm anaerobic digestion system [J]. Chinese Journal of Environmental Engineering, 2015,9(12):5907-5914.
[50]
Lens P, Visser A, Janssen A, et al. Biotechnological treatment of sulfate-rich wastewaters [J]. Critical reviews in environmental science and technology, 1998,28(1):41-88.
[51]
Luo H, Sun Y, Taylor M, et al. Impacts of aluminum-and iron-based coagulants on municipal sludge anaerobic digestibility, dewaterability, and odor emission [J]. Water Environment Research, 2022,94(1): e1684.
[52]
代 璐.高含固污泥厌氧消化特性及硫控制技术研究 [J]. 西安:西安建筑科技大学, 2016. Dai L. The characteristics and the sulfur control technology of the high solid sludge anaerobic digestion in WWTP [J]. Xi’an: Xi’an University of Architecture and Technology, 2016.
[53]
Golovnya R, Arsenyev Y N, Svetlova N. Use of heavy metal salts in the analysis of organic sulphur compounds [J]. Journal of Chromatography A, 1972,69(1):79-86.
[54]
Farkas E, Sovago I. Metal complexes of amino acids and peptides [J]. Amino Acids Peptides and Proteins, 2002,33:295-364.
[55]
Higgins M, Murthy S, Yarosz D, et al. Effect of Chemical addition on Production of Volatile Sulfur Compounds and Odor from Anaerobically Digested Biosolids [J]. Proceedings of the Water Environment Federation, 2002,2002:454-467.
[56]
Zhang J, Zhang Y, Quan X, et al. Bioaugmentation and functional partitioning in a zero valent iron-anaerobic reactor for sulfate-containing wastewater treatment [J]. Chemical Engineering Journal, 2011,174(1):159-165.
[57]
Andriamanohiarisoamanana F J, Shirai T, Yamashiro T, et al. Valorizing waste iron powder in biogas production: Hydrogen sulfide control and process performances [J]. Journal of environmental management, 2018,208:134-141.
[58]
Abbott T, Eskicioglu C. Effects of metal salt addition on odor and process stability during the anaerobic digestion of municipal waste sludge [J]. Waste Management, 2015,46:449-458.
[59]
Erdirencelebi D, Kucukhemek M. Control of hydrogen sulphide in full-scale anaerobic digesters using iron (III) chloride : performance, origin and effects [J]. Water SA, 2018,44(2):176-183.
[60]
Ali M, Singh Nitin K, Bhatia A, et al. Sulfide Production Control in UASB Reactor by Addition of Iron Salt [J]. Journal of Environmental Engineering, 2015,141(6):06014008.
[61]
Zhuan R, Yang G, Zhang G M, et al. Effects of Ferric Salts on Sludge Anaerobic Digestion and Desulphurization [J]. Materials Science Forum, 2018,913:887-892.
[62]
Akgul D, Abbott T, Eskicioglu C. Assessing iron and aluminum-based coagulants for odour and pathogen reductions in sludge digesters and enhanced digestate dewaterability [J]. Science of The Total Environment, 2017,598:881-888.
[63]
Higgins M, Murthy S, Yarosz D, et al. Effect of Chemical addition on Production of Volatile Sulfur Compounds and Odor from Anaerobically Digested Biosolids [J]. Proceedings of the Water Environment Federation, 2002,2002(11):454-467.
[64]
Dhar B R, Youssef E, Nakhla G, et al. Pretreatment of municipal waste activated sludge for volatile sulfur compounds control in anaerobic digestion [J]. Bioresource Technology, 2011,102(4):3776-3782.
[65]
Ayaa P, McFarland M. Effect of Magnetite on Anaerobic Digester Biogas, Hydrogen Sulfide Gas, Digester Effluent, and Related Processes [J]. Journal of Environmental Engineering, 2021,147(12): 05021005.
[66]
Jung H, Baek G, Lee C. Magnetite-assisted in situ microbial oxidation of H2S to S0during anaerobic digestion: A new potential for sulfide control [J]. Chemical Engineering Journal, 2020,397:124982.
[67]
Parker W, Celmer-Repin D, Bicudo J, et al. Assessment of the use of mainstream iron addition for phosphorous control on H2S content of biogas from anaerobic digestion of sludges [J]. Water Environment Research, 2020,92(3):338-346.
[68]
Su L, Shi X, Guo G, et al. Stabilization of sewage sludge in the presence of nanoscale zero-valent iron (nZVI): abatement of odor and improvement of biogas production [J]. Journal of Material Cycles and Waste Management, 2013,15(4):461-468.
[69]
Su L, Zhen G, Zhang L, et al. The use of the core-shell structure of zero-valent iron nanoparticles (NZVI) for long-term removal of sulphide in sludge during anaerobic digestion [J]. Environmental Sciences: Processes and Impacts, 2015,17(12):2013-2021.
[70]
Abdelwahab T A M, Mohanty M K, Sahoo P K, et al. Impact of iron nanoparticles on biogas production and effluent chemical composition from anaerobic digestion of cattle manure [J]. Biomass Conversion and Biorefinery, 2020,12(12):5583-5595.
[71]
Liu Y, Zhang Y, Ni B-J. Zero valent iron simultaneously enhances methane production and sulfate reduction in anaerobic granular sludge reactors [J]. Water Research, 2015,75:292-300.
[72]
许 东.废铁屑促进污泥厌氧消化及原位硫化氢控制研究 [J]. 长沙:湖南大学, 2018. Xu D. Effect of waste scrap iron on sludge anaerobic digestion and in situ H2S control [J]. Changsha: Hunan University, 2018.
[73]
Farghali M, Andriamanohiarisoamanana F J, Ahmed M M, et al. Prospects for biogas production and H2S control from the anaerobic digestion of cattle manure: The influence of microscale waste iron powder and iron oxide nanoparticles [J]. Waste Management, 2020, 101:141-149.
[74]
Zhou Q, Jiang X, Li X, et al. The control of H2S in biogas using iron ores as in situ desulfurizers during anaerobic digestion process [J]. Applied Microbiology and Biotechnology, 2016,100(18):8179-8189.
[75]
黄绍福,叶 捷,周顺桂.赤铁矿抑制硫酸盐废水厌氧消化产甲烷过程中硫化氢形成与机制 [J]. 环境科学, 2019,40(4):1857-1864. Huang S F, Ye J, Zhou S G. Effect of hematite on the inhibition of hydrogen sulfide formation and its mechanism during anaerobic digestion and methanogenesis of sulfate wastewater [J]. Environmental Science, 2019,40(4):1857-1864.
[76]
苏良湖,张明珠,张龙江,等.水合氧化铁对污泥厌氧消化过程的硫化氢控制 [J]. 中国环境科学, 2017,37(4):1349-1357. Su L H, Zhang M Z, Zhang L J, et al. The removal of hydrogen sulphide by ferrihydrite during anaerobic digestion of sewage sludge [J]. China Environmental Science, 2017,37(4):1349-1357.
[77]
Gran S, Motiee H, Mehrdadi N, et al. Impact of Metal Oxide Nanoparticles (NiO, CoO and Fe3O4) on the Anaerobic Digestion of Sewage Sludge [J]. Waste and Biomass Valorization, 2022,13(11): 4549-4563.
[78]
Zhang J, Qu Y, Qi Q, et al. The bio-chemical cycle of iron and the function induced by ZVI addition in anaerobic digestion: A review [J]. Water Research, 2020,186:116405.
[79]
杨一烽.挥发性有机硫化物二甲基二硫醚气体治理方法的研究进展 [J]. 净水技术, 2021,40(3):42-47,60. Yang Y F. Research progress of treatment methods for volatile organic sulfide dimethyl disulfide gas [J]. Water Purification Technology, 2021,40(3):42-47,60.
[80]
舒中亚,汪 杰,黄 艺.零价铁纳米颗粒对硫酸盐还原菌的杀灭作用研究 [J]. 环境科学, 2011,32(10):3040-3044. Shu Z Y, Wang J, Huang Y. Study of inactivating sulfate reducing bacteria with zero-valent iron nanoparticles [J]. Environmental Science, 2011,32(10):3040-3044.
[81]
孔 鑫.零价铁对生活垃圾有机质高负荷厌氧消化的调控效应研究 [J]. 北京:清华大学, 2017. Kong X. Effects of zero valent iron on anaerobic digestion of organic fraction of municipal solid waste at high organic loading [J]. Beijing:Tsinghua University, 2017.
[82]
Zhang C, Lu Q, Li Y. A review on sulfur transformation during anaerobic digestion of organic solid waste: Mechanisms, influencing factors and resource recovery [J]. Science of The Total Environment, 2023,865:161193.
[83]
Kong X, Liu J, Yue X, et al. Fe0inhibits bio-foam generating in anaerobic digestion reactor under conditions of organic shock loading and re-startup [J]. Waste Management, 2019,92:107-114.
[84]
Gao X, Yang F, Cheng J, et al. Emission of volatile sulphur compounds during swine manure composting: Source identification, odour mitigation and assessment [J]. Waste Management, 2022,153: 129-137.
[85]
Thanakunpaisit N, Jantarachat N, Onthong U. Removal of Hydrogen Sulfide from Biogas using Laterite Materials as an Adsorbent [J]. Energy Procedia, 2017,138:1134-1139.
[86]
A. de Angelis. Natural gas removal of hydrogen sulphide and mercaptans [J]. Applied Catalysis B: Environmental, 2012,113-114: 37-42.
[87]
Davydov A, Chuang K T, Sanger A R. Mechanism of H2S Oxidation by Ferric Oxide and Hydroxide Surfaces [J]. The Journal of Physical Chemistry B, 1998,102(24):4745-4752.
[88]
赵阳国,任南琪,王爱杰,等.铁元素对硫酸盐还原过程的影响及微生物群落响应 [J]. 中国环境科学, 2007,2:199-203. Zhao Y G, Ren N Q, Wang A J, et al. The influence of Fe elements on sulfate reduction process and the response of microbial community [J]. China Environmental Science, 2007,2:199-203.
[89]
王梦妍,王 倩,李雅婕,等.导电材料强化厌氧处理技术研究进展 [J]. 工业水处理, 2022,7:1-24. Wang M Y, Wang Q, Li Y J, et al. Research progress of conductive material enhanced anaerobic treatment technology [J]. Industrial Water Treatment, 2022,7:1-24.
[90]
Sun J, Wei L, Yin R, et al. Microbial iron reduction enhances in-situ control of biogenic hydrogen sulfide by FeOOH granules in sediments of polluted urban waters [J]. Water Research, 2020,171:115453.
[91]
Li Y, Dong C, Li Y, et al. Independent of direct interspecies electron transfer: Magnetite-mediated sulphur cycle for anaerobic degradation of benzoate under low-concentration sulphate conditions [J]. Journal of Hazardous Materials, 2022,423:127051.
[92]
Jung H, Kim D, Choi H, et al. A review of technologies for in-situ sulfide control in anaerobic digestion [J]. Renewable and Sustainable Energy Reviews, 2022,157:112068.
[93]
Li W, Han Z, Sun D. Preparation of sludge-based activated carbon for adsorption of dimethyl sulfide and dimethyl disulfide during sludge aerobic composting [J]. Chemosphere, 2021,279:130924.
[94]
Zuo T, Qian Y, Zhang H, et al. Impact of Fe3O4 Nanoparticles on Methane Production from Anaerobic Digestion and Kinetic Analysis [J]. Revista de Chimie Revista de Chimie SRL, 2022,73:87-98.
[95]
Li X, Xiong N, Wang X, et al. New insight into volatile sulfur compounds conversion in anaerobic digestion of excess sludge: Influence of free ammonia nitrogen and thermal hydrolysis pretreatment [J]. Journal of Cleaner Production, 2020,277:123366.