Research progress on heavy metal migration model at watershed scale
LIU Lian-hua1, ZHANG Qing-wen1, WANG Yi-di2, GU Xiang3
1. Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2. Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; 3. School of Environment, Beijing Normal University, Beijing 100875, China
Abstract:This paper elucidated the main sources, migration mechanisms of heavy metals in the watershed and reviewed the characteristics of commonly used empirical and mechanistic models. The advantages and disadvantages of common-used models were compared synthetically. Results showed that, heavy metal migration models have been improved from the empirical models with simple linear or nonlinear to the mechanism models with the migration and transformation with hydrological and soil erosion processes. The applicability of heavy metal migration models is gradually expanding, and the simulation accuracy is constantly improving, which play an important role in the simulation of heavy metal loadings and water quality prediction. Empirical models require fewer basic data and have relatively simple calculation processes, making them suitable for rough evaluation of heavy metal loadings in the watersheds with limited data. Mechanism models require many high-accuracy data, and have complex model structures, which can achieve the detailed simulation of heavy metal migration processes. The authors proposed outlook on the development of multiple model coupling, the mechanism research of different migration paths, and the identification analysis of heavy metal pollution tracing. Achieving these prospects will provide scientific support for the application, improvement, and source identification of heavy metal pollution at watershed scale.
刘连华, 张晴雯, 王依滴, 顾翔. 流域重金属迁移模型研究进展[J]. 中国环境科学, 2023, 43(8): 4229-4238.
LIU Lian-hua, ZHANG Qing-wen, WANG Yi-di, GU Xiang. Research progress on heavy metal migration model at watershed scale. CHINA ENVIRONMENTAL SCIENCECE, 2023, 43(8): 4229-4238.
Qiao P W, Lei M, Yang S C, et al. Development of a model to simulate soil heavy metals lateral migration quantity based on SWAT in Huanjiang watershed, China[J]. Journal of Environment Sciences, 2019,77:115-129.
[2]
刘楠,唐莹影,陈盟,等.基于APCS-MLR和PMF的铅锌矿流域土壤重金属来源解析[J].中国环境科学, 2023,43(3):1267-1276. Liu N, Tang Y Y, Chen M, et al. Source apportionment of soil heavy metals in lead-zinc area based on APCS-MLR and PMF[J]. China Environmental Science, 2023,43(3):1267-1276.
[3]
雷梅,王云涛,顾闰尧,等.基于知识图谱的土壤重金属快速监测技术进展[J].中国环境科学, 2018,38(1):244-253. Lei M, Wang Y T, Gu R R, et al. A review of the rapid monitoring of soil heavy metals based on mapping knowledge domains[J]. China Environmental Science, 2018,38(1):244-253.
[4]
Wu Y, Li X, Yu L, et al. Review of soil heavy metal pollution in China:Spatial distribution, primary sources, and remediation alternatives[J]. Resources, Conservation & Recycling, 2022,181:106261.
[5]
Meite F, Alvarez-Zaldívar P, Crochet A, et al. Impact of rainfall patterns and frequency on the export of pesticides and heavy-metals from agricultural soils[J]. Science of the Total Environment, 2018, 616-617:500-509.
[6]
Zhou L, Meng Y, Vaghefi S A, et al. Uncertainty-based metal budget assessment at the watershed scale:Implications for environmental management practices[J]. Journal of Hydrology, 2020,584:124699
[7]
Jiao W, Ouyang W, Hao F, et al. Combine the soil water assessment tool (SWAT) with sediment geochemistry to evaluate diffuse heavy metal loadings at watershed scale[J]. Journal of Hazardous Materials, 2014,280:251-259.
[8]
Velleux M L, England J F, Julien P Y. TREX:spatially distributed model to assess watershed contaminant transport and fate[J]. Science of the Total Environment, 2008,404:113-128.
[9]
Meng Y, Zhou L, He S, et al. A heavy metal module coupled with the SWAT model and its preliminary application in a mine-impacted watershed in China[J]. Science of the Total Environment, 2018,613-614:1207-1219.
[10]
周凌峰,孟耀斌,逯超,等.流域尺度重金属行为模拟及其对不同气象因子的响应特征研究[J].农业环境科学学报, 2019,38(5):1112-1120. Zhou F L, Meng Y B, Lu C, et al. Modeling the fate and transport of heavy metals, and their response to climate change at the watershed scale[J]. Journal of Agro Environment Science, 2019,38(5):1112-1120.
[11]
易琦,王瑞芳,赵筱青,等.中小河流水体重金属Zn、Pb、As沿程迁移扩散过程模拟-以沘江为例[J].云南大学学报(自然科学版), 2022,44(1):98-106. Yi Q, Wang R F, Zhao X Q, et al. Simulation of migration and diffusion processes of heavy metals Zn, Pb and As in medium and small rivers:Taking Bijiang River as an example[J]. Journal of Yunnan University:Natural Sciences Edition, 2022,44(1):98-106.
[12]
任伯帜,刘科家,马宏璞,等.基于SWAT模型的金属矿区雨水径流中锰污染负荷分析[J].环境污染与防治, 2014,36(11),50-54. Ren B Z, Liu J K, Ma H P, et al. Analysis of manganese pollution load of rainfall runoff in manganese ore zone based on SWAT model[J]. Environmental Pollution & Control, 2014,36(11),50-54.
[13]
茆峰.矿区特征污染物在河流中的迁移转化数学模型研究[D].合肥工业大学, 2012. Mao F. Research on mathematical models of migration and transformation for features pollutants of mining area in rivers[D]. Hefei:Hefei University of Technology, 2012.
[14]
何寿亮,孟耀斌,逯超.基于改进SWAT模型的滹沱河上游流域重金属模拟初步研究-以Zn为例[J].中国科技论文, 2013,8(5):458-464. He S L, Meng Y B, Lu C. Preliminary research on heavy metal behavior modeling in Hutuohe river upstream watershed based on SWAT model:taking Zinc as an example[J]. China Sciencepaper, 2013,8(5):458-464.
[15]
蔡明,李怀恩,庄咏涛,等.改进的输出系数法在流域非点源污染负荷估算中的应用[J].水利学报, 2004,35(7):40-45. Cai M, Li H N, Zhuang Y T, et al. Application of modified export coefficient method in polluting load estimation of non-point source pollution[J]. Journal of Hydraulic Engineering, 2004,35(7):40-45.
[16]
费坤,汪甜甜,邹文嵩,等.土壤重金属污染空间插值及其验证方法研究综述[J].环境监测管理与技术, 2022,34(2):1-6. Fei K, Wang T T, Zou W H, et al. Review on spatial interpolation and its verification method of heavy metal pollution in soil[J]. The Administration and Technique of Environmental Monitoring, 2022, 34(2):1-6.
[17]
侯静涛,刘娟,向永金,等.土壤中重金属累积预测模型研究进展[J].环境污染与防治, 2022,44(1):72-78. Hou J T, Liu J, Xiang Y J, et al. Application of heavy metal accumulation prediction model in soil:a review[J]. Environmental Pollution & Control, 2022, 44(1):72-78.
[18]
王霞,仇启善.水环境中重金属的存在形态和迁移转化规律综述[J].内蒙古环境保护, 1998,10(2):22-24. Wang X, Chou Q S. Review on the existing forms, migration and transformation of heavy metals in water environment[J]. Inner Mongolian Environmental Protection, 1998,10(2):22-24.
[19]
黄岁樑,万兆惠.河流重金属迁移转化数学模型研究综述[J].泥沙研究, 1995,4:42-49. Huang S L, Wan Z H. Reviews on present research situation of mathematical modeling transport and transformation of heavy metals in fluvial rivers[J]. Journal of Sediment Research, 1995,4:42-49.
[20]
陈雅丽,翁莉萍,马杰,等.近十年中国土壤重金属污染源解析研究进展[J].农业环境科学学报, 2019,38(10):2219-2238. Chen Y L, Weng L P, Ma J, et al. Review on the last ten years of research on source identification of heavy metal pollution in soils[J]. Journal of Agro Environment Science, 2019,38(10):2219-2238.
[21]
吴迪,董彬,尉海东.土壤重金属污染来源研究综述[J].安徽农学通报, 2017,23(23):58-60. Wu D, Dong B, Wei H D. Review of soil heavy metal pollution sources[J]. Anhui Agricultural Science Bulletin, 2017,23(23):58-60.
[22]
卢维宏,刘娟,张乃明,等.设施菜地土壤重金属累积及影响因素研究[J].中国环境科学, 2022,42(6):2744-2753. Lu W, Liu Y, Zhang N, et al. Study on the accumulation of heavy metals and influencing factors in the soil of facility vegetable fields[J]. China Environmental Science, 2022,42(6):2744-2753.
[23]
黄国秦,王兴祥,钱海燕,等.施用化学肥料对农业生态环境的负面影响与对策[J].生态环境, 2004,13(4):656-660. Huang G Q, Wang X X, Qian H Y, et al. Negative impact of inorganic fertilizes application on agricultural environment and its countermeasures[J]. Ecology and Environment, 2004,13(4):656-660.
[24]
辛术贞,李花粉,苏德纯,等.我国污灌污水中重金属含量特征及年代变化规律[J].农业环境科学学报, 2011,30(11):2271-2278. Xin S Z, Li H F, Su D C, et al. Concentration characteristics and historical changes of heavy metals in irrigation sewage in China[J]. Journal of Agro-Environment Science, 2011,30(11):2271-2278.
[25]
Meng W, Wang Z, Hu B, et al. Heavy metals in soil and plants after long-term sewage irrigation at Tianjin China:A case study assessment[J]. Agricultural Water Management, 2016,171:153-161.
[26]
于立红,王鹏,于立河,等.地膜中重金属对土壤大豆系统污染的试验研究[J].水土保持通报, 2013,33(3):1-4. Yu L H, Wang P, Yu L H, et al. Experimental study of pollution by heavy metals of plastic film in soil-Soybean system[J]. Bulletin of Soil and Water Conservation, 2013,33(3):1-4.
[27]
Luo H W, Liu C Y, He D Q, et al. Effects of aging on environmental behavior of plastic additives:Migration, leaching, and ecotoxicity[J]. Science of the Total Environment, 2022,849:157951.
[28]
He M C, Wang X Q, Wu F C, et al. Antimony pollution in China[J]. Science of the Total Environment, 2012,421-422:41-50.
[29]
Guo W J, Zhang Z Y, Wang H, et al. Exposure characteristics of antimony and coexisting arsenic from multi-path exposure in typical antimony mine area[J]. Journal of Environmental Management, 2021,289:112493.
[30]
宋书巧,梁利芳,周永章,等.广西刁江沿岸农田受矿山重金属污染现状与治理对策[J].矿物岩石地球化学通报, 2003,22(2):152-155. Song S Q, Liang L F, Zhou Y Z, et al. The situation and remedial measures of the cropland polluted by heavy metals from mining along the Diaojian River[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2003,22(2):152-155.
[31]
赵纪新,尹鹏程,岳荣,等.我国农田土壤重金属污染现状·来源及修复技术研究综述[J].安徽农业科学, 2018,46(4):19-21,26. Zhao J X, Yin P C, Yue R, et al. Research progress of status, source, restoration technique of heavy metals pollution in cropland of China[J]. Journal of Anhui Agricultural Sciences, 2018,46(4):19-21,26.
[32]
Herath I, Vithanage M, Bundschuh J, et al. Antimony as a global dilemma:Geochemistry, mobility, fate and transport[J]. Environmental Pollution, 2017,223:545-559.
[33]
刘雯,卢新卫,陈灿灿,等.电厂周围土壤磁化率对重金属污染的指示意义[J].土壤通报, 2013,44(4):994-996. Liu W, Lu X W, Chen C C, et al. The indicating significance of magnetic susceptibility of soil around coal-fired power plant for heavy metal pollution[J]. Chinese Journal of Soil Science, 2013,44(4):994-996.
[34]
谢博文,王艺,赵晟雯,等.土壤重金属污染研究综述[J].广州化工, 2016,44(1):21-23. Xie B W, Wang Y, Zhao S W, et al. Review of soil heavy metal pollution[J]. Guangzhou Chemical Industry, 2016,44(1):21-23.
[35]
Alam O, Billah M, Ding Y J. Characteristics of plastic bags and their potential environmental hazards[J]. Resources, Conservation and Recycling, 2018,132:121-129.
[36]
向静雅,王倩,邵明帅,等.深圳海滩塑料垃圾及其重金属污染分析[J].中国环境科学, 2020,40(7):3097-3105. Xiang J Y, Wang Q, Shao M S, et al. Assessment of beach plastic waste and its heavy metal pollution in Shenzhen[J]. China Environmental Science, 2020,40(7):3097-3105.
[37]
Men C, Liu R M, Wang Q R. et al. Spatial-temporal characteristics, source-specific variation and uncertainty analysis of health risks associated with heavy metals in road dust in Beijing, China[J]. Environmental Pollution, 2021,278:116866.
[38]
王建,夏天,罗政,等.基于GIS的土壤重金属污染模拟扩散研究及应用[J].测绘与空间地理信息, 2022,45(1):74-78. Wang J, Xia T, Luo Z, et al. Research and application on soil heavy metal pollution simulated diffusion based on GIS[J]. Geomatics & Spatial Information Technology, 2022,45(1):74-78.
[39]
王刘炜,侯德义.农田重金属污染长期演变LIVE模型构建[J].土壤通报, 2021,53(6):1471-1480. Wang L W, Hou D Y. Modeling the Long-term evolving features of heavy metal concentration in agricultural soil[J]. Chinese Journal of Soil Science, 2021,53(6):1471-1480.
[40]
Zhu Y M, Yang J G, Wang L Z, et al. Factors influencing the uptake and speciation transformation of antimony in the soil-plant system, and the redistribution and toxicity of antimony in plants[J]. Science of the Total Environment, 2020,738:140232.
[41]
Feng R W, Wei C Y, Tu S X, et al. The uptake and detoxification of antimony by plants:A review[J]. Environmental and Experimental Botany, 2013,96:28-34.
[42]
Kerr J G, Cooke C A. Erosion of the Alberta badlands produces highly variable and elevated heavy metal concentrations in the Red Deer River, Alberta[J]. Science of the Total Environment, 2017,596-597:427-436.
[43]
Li Z Y, Pan F, Xiao K, et al. An integrated study of the spatiotemporal character, pollution assessment, and migration mechanism of heavy metals in the groundwater of a subtropical mangrove wetland[J]. Journal of Hydrology, 2022,612:128251.
[44]
Zhou H Y, Rao K, Yao M J, et al. Effects of land use, meteorology, and hydrology on nutrients, biochemical indexes, and heavy metals in Qingjiang River Basin, China[J]. Journal of Cleaner Production, 2022, 370:1334116.
[45]
Zhang Y, Zhang X, Bi Y L, et al. The impact of land use changes and erosion process on heavy metal distribution in the hilly area of the Loess Plateau, China[J]. Science of the Total Environment, 2020, 718:137305.
[46]
罗小青.基于GIS的湘江水环境重金属污染分布式物理过程及模拟[D].长沙:中南大学, 2013. Luo X Q. The distributed physical processes and modeling of heavy metal pollution on Xiangjiang River based on GIS[D]. Changsha, Central South University, 2013.
[47]
Qiao P, Wang S, Li J, et al. Process, influencing factors, and simulation of the lateral transport of heavy metals in surface runoff in a mining area driven by rainfall:a review[J]. Science of the Total Environment, 2023,857:159119.
[48]
Cao L Y, Li W, Deng H, et al. Effect of land use pattern on the bioavailability of heavy metals:A case study with a multi-surface model[J]. Chemosphere, 2022,307:135842.
[49]
Gu X, Ouyang W, Xu L, et al. Occurrence, migration, and allocation of arsenic in multiple media of a typical semi-enclosed bay[J]. Journal of Hazardous Materials, 2020,384:121313.
[50]
Fan J Y, Fan D, Wu Y J. Spatiotemporal variations of heavy metal historical accumulation records and their influencing mechanisms in the Yangtze River Estuary[J]. Science of the Total Environment, 2023,854:158733.
[51]
祁彧.汾河干流重金属迁移规律研究[D].太原:太原理工大学, 2017. Qi Y. Study on the heavy metal migration rule in the mainstream of Fenhe river[D]. Taiyuan:Taiyuan University of Technology, 2017.
[52]
Deng M H, Yang X E, Dai X, et al. Heavy metal pollution risk assessments and their transportation in sediment and overlay water for the typical Chinese reservoirs[J]. Ecological Indicators, 2020,112:106166.
[53]
Dan S F, Udoh E C, Wang Q Q. Contamination and ecological risk assessment of heavy metals, and relationship with organic matter sources in surface sediments of the Cross River Estuary and nearshore areas[J]. Journal of Hazardous Materials, 2022,438:129531.
[54]
Hu X P, Shi X Y, Su R G, et al. Spatiotemporal patterns and influencing factors of dissolved heavy metals off the Yangtze River Estuary, East China Sea[J]. Marine Pollution Bulletin, 2022,182:113975.
[55]
王苗.流域重金属分布式运移模型研究[D].兰州:西北师范大学, 2019. Wang M. Research on distributed migration model of heavy metals in watershed[D]. Lanzhou:Northwest Normal University, 2019.
[56]
吴云龙.基于改进输出系数模型的铅镉砷非点源污染负荷研究[D].湘潭:湘潭大学, 2017. Wu Y L. Study on non-point source load of Pb, Cd, As based on improved export coefficient model[D]. Xiangtan:Xiangtan University, 2017.
[57]
隋红建,吴璇,崔岩山.土壤重金属迁移模拟研究的现状与展望[J].农业工程学报, 2006,22(6):197-200. Sui H J, Wu X, Cui Y S. Modeling heavy metal movement in soil:review and further study directions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006,22(6):197-200.
[58]
Brezonik P L, Stadelmann T H. Analysis and predictive models of stormwater runoff volumes, loads, and pollutant concentrations from watersheds in the Twin Cities metropolitan area, Minnesota, USA[J]. Water Research, 2002,36:1743-1757.
[59]
Johnes P J. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters:the export coefficient modelling approach[J]. Journal of Hydrology, 1996,183(3/4):323-349.
[60]
张天蛟,刘刚,王圣伟.基于GIS/RS的不同土地利用类型重金属面源污染比较[J].农业机械学报, 2014,45:124-132. Zhang T J, Liu G, Wang S W. Estimation of heavy metal pollution loads from non-point sources based on GIS/RS[J]. Transactions of the Chinese Society of Agricultural Machinery, 2014,45:124-132.
[61]
高磊,陈建耀,朱爱萍,等.基于SCS模型的跨界小流域物质通量估算-以东莞石马河流域为例[J].中国环境科学, 2015,35(3):925-933. Gao L, Chen J Y, Zhu A P, et al. Calculation of masses flux in a transboundary catchment based on SCS model:A case study in Shima River catchment, Dongguan City[J]. China Environmental Science, 2015,35(3):925-933.
[62]
Yi Y, Ken H. A preliminary model for prediction heavy metal contaminant loading from an urban catchment[J]. Science of the Total Environment, 2001,266(1):299-307.
[63]
Donald J. Model of sorptive toxic substance in freshwater systems I:basic equation[J]. Journal of Environmental Engineering, 1988,3:507-532.
[64]
Lin Y, Larssen T, Vogt R D, et al. Modelling transport and transformation of mercury fractions in heavily contaminated mountain streams by coupling a GIS-based hydrological model with a mercury chemistry model[J]. Science of The Total Environment, 2011,409(21):4596-4605.
[65]
胡晞.基于WASP模型的湘江湘潭段水质目标管理研究[D].湘潭:湘潭大学, 2013. Hu X. The water quality target management research on Xiangtan section of Xiangjiang river based on WASP model[D]. Xiangtan:Xiangtan University, 2013.
[66]
Du X Z, Shrestha N K, Wang J. Incorporating a non-reactive heavy metal simulation module into SWAT model and its application in the Athabasca oil sands region[J]. Environmental Science Pollution Research, 2019,26:20879-20892.
[67]
Velleux M L, Julien P Y, Rojas-Sanchez R, et al. Simulation of metals transport and toxicity at a mine-impacted watershed:California Gulch, Colorado[J]. Environmental Science & Technology, 2006,40(22):6996-7004.
[68]
Wei L Z, Kinouchi T, Yoshimura K, et al. Modeling watershed-scale Cs-137transport in a forested catchment affected by the Fukushima Dai-ichi Nuclear Power Plant accident[J]. Journal of Environmental Radioactivity, 2017,171:21-33.
[69]
Neitsch S L, Arnold J G, Kiniry J R, et al. Soil and Water Assessment Tool Theoretical Documentation:Version 2005[M]. Texas:Texas Water Resources Institute, 2005.
[70]
郝芳华,程红光,杨胜天.面源污染模型:理论方法与应用[M].北京:中国环境科学出版社, 2006. Hao F H, Cheng H G, Yang S T. Non-point source pollution model:Theoretical method and application[M]. Beijing:China Environmental Science Press, 2006.
[71]
林钟荣,郑一,向仁军,等.重金属面源污染模拟及其不确定性分析:以湘江株洲段镉污染为例[J].长江流域资源与环境, 2012,21(9):1112-1118. Lin Z R, Zheng Y, Xiang R J, et al. Simulation of the nonpoint sources load of heavy metals and its uncertainty analysis:A case study of cadmium pollution at the Xiangjiang River in the Zhu zhou City[J]. Resources and Environment in the Yangtze Basin, 2012,21(9):1112-1118.
[72]
张青梅,韩峰,刘湛,等.基于SWAT模型的湘江株洲段汞面源污染负荷测算[J].四川环境, 2018,37(2):32-37. Zhang Q M, Han F, Liu Z, et al. Calculation of mercury non-point source pollution of Xiangjiang river Zhuzhou section based on the SWAT model[J]. Sichuan Environment, 2018,37(2):32-37.
[73]
刘科家.改进SWAT模型在锑矿区土水界面流锑污染负荷模拟中的应用研究[D].湘潭:湖南科技大学, 2015. Liu K J. The applied research of antimony pollution load simulation by improved SWAT model in the soil-water interface of antimony mine[D]. Xiangtan:Hunan University of Science and Technology, 2015.
[74]
Jeong J, Yang J, Han S, et al. Assessment of coupled hydrologic and biogeochemical Hg cycles in a temperate forestry watershed using SWAT-Hg[J]. Environmental Modelling and Software, 2020,126:104644.
[75]
Zhang Y, Ren B Z, Hursthouse A S, et al. An improved SWAT for predicting manganese pollution load at the soil-water interface in a manganese mine area[J]. Polish Journal of Environmental Studies, 2018,27:2357-2365.
[76]
Chueh Y Y, Fan C, Huang Y Z. Copper concentration simulation in a river by SWAT-WASP integration and its application to assessing the impacts of climate change and various remediation strategies[J]. Journal of Environmental Management, 2021,279:111613.
[77]
轩晓博,逄勇,李一平,等.金属矿区重金属迁移对水体影响的数值模拟[J].水资源保护, 2015,31(2):30-35. Xuan X B, Pang Y, Li Y P, et al. Numerical simulation of influence of heavy metal migration on water in metallic mining areas[J]. Water Resources Protection, 2015,31(2):30-35.
[78]
齐兆东.三湾水库蓄水期重金属迁移特性数值模拟研究[J].中国水能及电气化, 2019,5:35-38. Qi Z D. Numerical simulation of heavy metal migration characteristic in Sanwan reservoir during impoundment period[J]. China Water Power & Electrification, 2019,5:35-38.
[79]
武万国.湘江长株潭河段突发重金属水污染事故模拟研究[J].中国水运, 2018,18(10):63-67. Wu W G. Simulation study on sudden accidents of heavy metal water pollution in the Changzhutan Section of Xiangjiang River[J]. China Water Transport, 2018,18(10):63-67.
[80]
龚然,何跃,徐力刚,等.EFDC (Environmental Fluid Dynamics Code)模型在湖库水环境模拟中的应用进展[J].海洋湖沼通报, 2016,6:12-19. Gong R, He Y, Xu L G, et al. The application progress of environmental fluid dynamics code (EFDC) in lake and reservoir environment[J]. Transactions of Oceanology and Limnology, 2016, 6:12-19.
[81]
刘艳,李川,曹碧波,等.基于改进QUAL2Kw模型的水环境重金属污染模拟[J].安全与环境学, 2016,16(5):258-264. Liu Y, Li C, Cao B B, et al. Improved QUAL2Kw model for assessing the heavy metal pollution in the aquarium environment[J]. Journal of Safety and Environment, 2016,16(5):258-264.
[82]
Sui C M, Fatichi S, Burlando P, et al. Modeling distributed metal pollution transport in a mine impacted catchment:Short and long-term effects[J]. Science of the Total Environment, 2022,812:151473.