Research on the application of petroleum hydrocarbon degradation genes and their recombinant bacteria
CHANG Xiao-yu, JI Lei, HUANG Yu-jie, SONG Fan-yong, WANG Jia-ning
Shandong Province Key Laboratory of Applied Microbiology, Ecology Institute of Shandong Academy of Sciences, Qilu University of Technology(Shandong Academy of Sciences), Jinan 250103, China
Abstract:Petroleum hydrocarbon pollution is currently a serious environmental problem. Microbial remediation is an effective means of remediating petroleum hydrocarbon contamination at this stage. Microorganisms are able to degrade petroleum hydrocarbon pollutants through a series of enzymes encoded by degradation genes. Therefore, the study of petroleum hydrocarbon degradation genes can not only clarify the degradation mechanism but also provide a theoretical basis for the construction of petroleum hydrocarbon degradation genetic engineering bacteria. This paper summarized the functional genes and key enzyme species for petroleum hydrocarbon degradation, focused on the metabolic pathways of long-chain alkanes and their degradation genes. The current strategies for the construction of petroleum hydrocarbon degrading genetically engineered bacteria are summarized, the problems and shortcomings of the existing studies are outlined, and the future prospects for the use of genetic engineering technology to improve the remediation efficiency of petroleum pollution are presented.
常晓宇, 季蕾, 黄玉杰, 宋繁永, 王加宁. 石油烃微生物降解基因及其工程菌应用研究进展[J]. 中国环境科学, 2023, 43(8): 4305-4315.
CHANG Xiao-yu, JI Lei, HUANG Yu-jie, SONG Fan-yong, WANG Jia-ning. Research on the application of petroleum hydrocarbon degradation genes and their recombinant bacteria. CHINA ENVIRONMENTAL SCIENCECE, 2023, 43(8): 4305-4315.
王信粉,时利香,李薇.石油烃污染土壤联合修复技术研究进展[J].环境生态学, 2022,4(1):84-90. Wang X F, Shi L X, L W. Advances in combined remediation technologies for petroleum hydrocarbon contaminated soils[J]. Environmental Ecology, 2022,4(1):84-90.
[2]
Xia W J, Du Z F, Cui Q F, et al. Biosurfactant produced by novel Pseudomonas sp. WJ6with biodegradation of n-alkanes and polycyclic aromatic hydrocarbons[J]. Journal of Hazardous Materials, 2014,276:489-498.
[3]
Wang W P, Shao Z Z. Enzymes and genes involved in aerobic alkane degradation[J]. Frontiers in Microbiology, 2013,4.
[4]
Holst M T, Wentzal A, Ellingsen T E, et al. Identification of novel genes involved in long-chain n-alkane degradation by acinetobacter sp. strain DSM 17874[J]. Applied Microbiology and Biotechnology, 2007,73(10):3327-3332.
[5]
董航.初冷温度对含蜡原油流变性及蜡晶动力学行为的影响规律研究[D].大庆:东北石油大学, 2021. Dong H. Effect of initial cooling temperature on waxy crude oilrheological properties and wax crystals dynamic behaviors[D]. Daqing:Northeast Petroleum University, 2021.
[6]
徐庆功.加降凝剂含蜡油蜡沉积特性研究[D].北京:中国石油大学(北京), 2020. Xu Q G. Characterization of wax deposition from wax-containing oils with depressant addition[D]. Bei Jing:China University of Petroleum (Bei Jing), 2020.
[7]
陈五花.原油中石蜡沉积的热力学研究[D].大连:大连理工大学, 2006. Chen W H. The thermodynamic research of wax precipitation in crude oils[D]. Dalian:Dalian University of Technology, 2006.
[8]
唐乐,陈苏杭,许志伟,等.石蜡燃料的燃烧性能与其化学组成的关系[J].含能材料, 2017,25(8):633-638. Tang L, Chen S H, Xu Z W, et al. Combustion performance of paraffinic fuels in relation to their chemical composition[J]. Chinese Journal of Energetic Materials, 2017,25(8):633-638.
[9]
Maki H, Hirayama N, Hiwatari T, et al. Crude oil bioremediation field experiment in the Sea of Japan[J]. Marine Pollution Bulletin, 2003, 47(1-6):74-77.
[10]
van Beilen J B, Funhoff E G. Alkane hydroxylases involved in microbial alkane degradation[J]. Applied Microbiology and Biotechnology, 2007,74:13-21.
[11]
Park C, Shin B, Jung J, et al. Metabolic and stress responses of Acinetobacter oleivorans DR1during long-chain alkane degradation[J]. Microbial Biotechnology, 2017,10(6):1809-1823.
[12]
Austin R N, Groves J T. Alkane-oxidizing metalloenzymes in the carbon cycle. Metallomics[J]. Metallomics, 2011,3(8):775-87.
[13]
van Beilen J B, Panke S, Lucchini S, et al. Analysis of Pseudomonas putida alkane degradation gene clusters and flanking insertion sequences:evolution and regulation of the alk-genes[J]. Microbiology, 2001,147:1621-1630.
[14]
Liang J L, JiangYang J H, Nie Y, et al. Regulation of the Alkane Hydroxylase CYP153Gene in a Gram-Positive Alkane-Degrading Bacterium, Dietzia sp. Strain DQ12-45-1b[J]. Applied Microbiology and Biotechnology, 2015,82(2):608-19.
[15]
Chen W W, Li J D, Sun X N, et al. High efficiency degradation of alkanes and crude oil by a salt-tolerant bacterium Dietzia species CN-3[J]. International Biodeterioration & Biodegradation, 2017,118:110-118.
[16]
Ji Y R, Mao G N, Wang Y Y, et al. Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases[J]. Frontiers in Microbiology, 2013,4:58.
[17]
徐宁,辛嘉英,王艳,等.甲烷单加氧酶的研究进展[J].生物技术通讯, 2013,24(1):130-133. Xu N, Xin J Y, Wang Y, et al. Advances in the study of methane monooxygenases[J]. Letters in Biotechnology, 2013,24(1):130-133.
[18]
Rojo F. Degradation of alkanes by bacteria[J]. Environmental Microbiology, 2009,11(10):2477-2490.
[19]
Munro A W, Girvan H M, Mason A E, et al. What makes a P450 tick?[J]. Trends in Biochemical Sciences, 2013,38(3):140-150.
[20]
Minerdi D, Sadeghi S J, Di Nardo G, et al. CYP116B5:a new class VII catalytically self-sufficient cytochrome P450 from Acinetobacter radioresistens that enables growth on alkanes[J]. Molecular Microbiology, 2015,95(3):539-554.
[21]
Liu J, Zhao B, Lan Y Z, et al. Enhanced degradation of different crude oils by defined engineered consortia of Acinetobacter venetianus RAG-1mutants based on their alkane metabolism[J]. Bioresource technology, 2021,327:124787.
[22]
Wang W P, Shao Z Z. Genes involved in alkane degradation in the Alcanivorax hongdengensis strain A-11-3[J]. Applied Microbiology and Biotechnology, 2012,94:437-448.
[23]
Feng L, Wang W, Cheng J S, et al. Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir[J]. PNAS, 2007,104(13):5602-5607.
[24]
Tani A, Ishige T, Sakai Y, et al. Gene structures and regulation of the alkane hydroxylase complex in Acinetobacter sp. strain M-1[J]. Journal of Bacteriology, 2001,183(5):1819-23.
[25]
Kothari A, Charrier M, Wu YW, et al. Transcriptomic analysis of the highly efficient oil-degrading bacterium Acinetobacter venetianus RAG-1 reveals genes important in dodecane uptake and utilization[J]. FEMS Microbiology Letters, 2016,363(20):fnw224.
[26]
Kniemeyer O, Musat F, Sievert S, et al. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria[J]. Nature, 2007,449:898-901.
[27]
Ji J H, Zhou L, Mbadinga S M, et al. Methanogenic biodegradation of C9 to C12 n-alkanes initiated by Smithella via fumarate addition mechanism[J]. AMB Express, 2020,10:23.
[28]
Wawrik B, Marks C R, Davidova I A, et al. Methanogenic paraffin degradation proceeds via alkane addition to fumarate by "Smithella" spp. mediated by a syntrophic coupling with hydrogenotrophic methanogens[J]. Environmental Microbiology, 2016,18(8):2604-2619.
[29]
Chen C, Zhang Z, Xu P, et al. Anaerobic biodegradation of polycyclic aromatic hydrocarbons[J]. Environmental Research, 2023,223:115472.
[30]
Cabral L, Giovanella P, Pellizzer E P, et al. Microbial communities in petroleum-contaminated sites:Structure and metabolisms[J]. Chemosphere, 2022,286(2):131752.
[31]
Soussan L, Pen N, Belleville P M, et al. Alkane biohydroxylation:Interests, constraints and future developments[J]. Journal of Biotechnology, 2016,222:117-142.
[32]
Aghadadashi V, Mehdinia A, Molaei S. Origin, toxicological and narcotic potential of sedimentary PAHs and remarkable even/odd n-alkane predominance in Bushehr Peninsula, the Persian Gulf[J]. Marine Pollution Bulletin, 2017,114(1):494-504.
[33]
Zakaria N N, Convey P, Gomez-Fuentes C, et al. Oil bioremediation in the marine environment of antarctica:A review and bibliometric keyword cluster analysis[J]. Microorganisms, 2021,9(2):419.
[34]
李恒昌,丁明珠.石油烃生物降解过程的研究进展[J].生物工程学报, 2021,37(8):2765-2778. Li H C, Ding M Z. Advances in the biodegradation of petroleum hydrocarbons[J]. Chinese Journal of Biotechnology, 2021,37(8):2765-2778.
[35]
Rodrigues C J C, de Carvalho C C C R. Phenotypic adaptations help Rhodococcus erythropolis cells during the degradation of paraffin wax[J]. Journal of Biotechnology, 2019,14(8):e1800598.
[36]
Varjani S J, Upasani V N. Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514[J]. Bioresource Technology, 2016,222:195-201.
[37]
Claus S, Jezierska S, Van Bogaert I N A. Protein-facilitated transport of hydrophobic molecules across the yeast plasma membrane[J]. febs letters, 2019,593(13):1508-1527.
[38]
Wang W P, Shao Z Z. The long-chain alkane metabolism network of Alcanivorax dieselolei[J]. nature communications, 2014,5:5755.
[39]
Sowani H, Kulkarni M, Zinjarde S. Uptake and detoxification of diesel oil by a tropical soil Actinomycete Gordonia amicalis HS-11:Cellular responses and degradation perspectives[J]. Environmental Pollution, 2020,263:114538.
[40]
Abbasian F, Lockington R, Mallavarapu M, et al. A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria[J]. Applied Microbiology and Biotechnology, 2015,176(3):670-99.
[41]
Ashraf W, Mihdhir A, Murrell J C. Bacterial oxidation of propane[J]. FEMS Microbiology Letters, 1994,122:1-6.
[42]
van Hamme J D, Singh A, Ward O P. Recent advances in petroleum microbiology[J]. Microbiology and Molecular Biology Reviews, 2003,67:503-549.
[43]
Wentzel A, Ellingsen T E, Kotlar H K, et al. Bacterial metabolism of long chain n-alkanes[J]. Applied Microbiology and Biotechnology, 2007,76:1209-1221.
[44]
Wang W P, Shao Z Z. Enzymes and genes involved in aerobic alkane degradation[J]. Frontiers in Microbiology, 2013,4.
[45]
Throne-Holst M, Wentzel A, Ellingsen T E, et al. Identification of novel genes involved in long-chain nalkane degradation by Acinetobacter sp. strain DSM 17874[J]. Applied Microbiology and Biotechnology, 2007,73:3327-3332.
[46]
Wang W P, Shao Z Z. Genes involved in alkane degradation in the Alcanivorax hongdengensis strain A-11-3[J]. Applied Microbiology and Biotechnology, 2012,94:437-448.
[47]
Vaneechoutte M, Young D M, Ornston L N, et al. Naturally transformable Acinetobacter sp. strain ADP1belongs to the newly described species Acinetobacter baylyi[J]. Applied Microbiology and Biotechnology, 2006,72:932-936.
[48]
Wang W P, Shao Z Z. Diversity offlavin-binding monooxygenase genes (almA) in marine bacteria capable of degradation long-chain alkanes[J]. FEMS Microbiology Ecology, 2012,80(3):523-33.
[49]
Liu H, Xu J, Liang R B, et al. Characterization of the medium-and long-chain n-alkanes degrading Pseudomonas aeruginosa strain SJTD-1 and its alkane hydroxylase genes[J]. PLOS ONE, 2014, 9(8):e105506.
[50]
Tourova T P, Sokolova D S, Semenova E M, et al. Genomic and physiological characterization of halophilic bacteria of the genera halomonas and marinobacter from petroleum reservoirs[J]. Microbiology, 2022,91:235-248.
[51]
Pee A, Dang N P, Truu M, et al. Assessment of hydrocarbon degradation potential in microbial communities in Arctic Sea ice[J]. Microorganisms, 2022,10:328.
[52]
杨劼,宋东辉.一株不动杆菌降解石油烃的特性及关键烷烃降解基因分析[J].微生物学通报, 2020,47(10):3237-3256. Yang Z, Song D H. Characterization of petroleum hydrocarbon degradation by an immobile bacterium strain and analysis of key alkane degradation genes[J]. Microbiology China, 2020,47(10):3237-3256.
[53]
Kong W N, Zhao C, Gao X W, et al. Characterization and transcriptome analysis of a long-chain n-alkane-degrading strain Acinetobacter pittii SW-1[J]. International Journal of Environmental Research and Public Health, 2021,18(12):6365.
[54]
Liu C L, Wang W P, Wu Y H, et al. Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5[J]. Environmental Microbiology, 2011,13(5):1168-1178.
[55]
Liu H, Xu J, Liang R B, et al. Characterization of the medium-and long-chain n-alkanes degrading Pseudomonas aeruginosa Strain SJTD-1 and its alkane hydroxylase genes[J]. PLOS ONE, 2014,9(8):e105506.
[56]
Li Y P, Pan J C, Ma Y L. Elucidation of multiple alkane hydroxylase systems in biodegradation of crude oil n-alkane pollution by Pseudomonas aeruginosa DN1[J]. Journal of Applied Microbiology, 2019,128:151-160.
[57]
Feng L, Wang W, Cheng J, et al. Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir[J]. Proceedings of the national academy of sciences of the united states of america, 2007,104:5602-5607.
[58]
Li L, Liu X, Yang W, et al. Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN:unveiling the long-chain alkane hydroxylase[J]. Journal of Molecular Biology, 2008,376:453-465.
[59]
Bihari Z, Pettkó-Szandtner A, Csanádi G, et al. Isolation and characterization of a novel n-alkane-degrading strain, Acinetobacter haemolyticus AR-46[J]. Zeitschrift für Naturforschung-Section C Journal of Biosciences, 2007,62(3/4):285-95.
[60]
Ratajczak A, Geissdoerfer W, Hillen W. Alkane hydroxylase from Acinetobacter sp. strain ADP1Is encoded by alkM and belongs to a new family of bacterial integral-membrane hydrocarbon hydroxylases[J]. Applied and environmental microbiology, 1998,64(4):1175-1179.
[61]
Sharma V, Kumar R, Sharma V K, et al. Expression, purification, characterization and in silico analysis of newly isolated hydrocarbon degrading bleomycin resistance dioxygenase[J]. Molecular Biology Reports, 2020,47(1):533-544.
[62]
胡梦杰,钟磊,蔡晓鲜,等.微生物降解石油烃的代谢机制及研究进展[J].环境工程, 2023,41(2):234-246. Hu M J, Zhong L, Cai X X, et al. Metabolic mechanism and research progress of microbial degradation of petroleum hydrocarbons[J]. Environmental Engineering, 2023,41(2):234-246.
[63]
Jurelevicius D, Alvarez V M, Peixoto R, et al. Bacterial polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases (PAH-RHD) encoding genes in different soils from King George Bay, Antarctic Peninsula[J]. Applied Soil Ecology, 2012,55:1-9.
[64]
Lozada M, Riva Mercadal J P, Guerrero, L D, et al. Novel aromatic ring-hydroxylating dioxygenase genes from coastal marine sediments of Patagonia[J]. BMC Microbiology, 2008,8:50.
[65]
He P Q, Li L, Liu J H, et al. Diversity and distribution of catechol 2, 3-dioxygenase genes in surface sediments of the Bohai Sea[J]. FEMS Microbiology Letters, 2016,363(10):fnw086.
[66]
Li S S, Qin K, Li H Y, et al. Cloning and characterisation of four catA genes located on the chromosome and large plasmid of Pseudomonas putida ND6[J]. Electronic Journal of Biotechnology, 2018,34:83-90.
[67]
Wartell B, Boufadel M, Rodriguez-Freire L. An effort to understand and improve the anaerobic biodegradation of petroleum hydrocarbons:A literature review[J]. International Biodeterioration & Biodegradation, 2021,157:105156.
[68]
Callaghan A V. Metabolomic investigations of anaerobic hydrocarbon-impacted environments[J]. Current Opinion in Biotechnology, 2013, 24(3):506-515.
[69]
Bharadwaj V S, Vyas S, Villano S M, et al. Unravelling the impact of hydrocarbon structure on the fumarate addition mechanism-a gas-phase ab initio study[J]. Physical Chemistry Chemical Physics, 17(6):4054-4066.
[70]
Wilkes H, Buckel W, Golding B T, et al. Metabolism of hydrocarbons in n-alkane-utilizing anaerobic bacteria[J]. Journal of Molecular Microbiology and Biotechnology, 2016,26(1-3):138-51.
[71]
Bian X Y, Mbadinga S M, Liu Y F, et al. Insights into the anaerobic biodegradation pathway of n-alkanes in oil reservoirs by detection of signature metabolites[J]. scientific reports, 2015,5:9801.
[72]
Meckenstock R U, Mouttaki H. Anaerobic degradation of non-substituted aromatic hydrocarbons[J]. Current Opinion in Biotechnology, 2011,22(3):406-414.
[73]
宋永亭.嗜热解烃基因工程菌SL-21的构建[J].油气地质与采收率, 2010,17(1):80-82,116. Song Y T. Construction of SL-21, a thermophilic hydrocarbon-resolving genetically engineered bacterium[J]. Petroleum Geology and Recovery Efficiency, 2010,17(1):80-82,116.
[74]
Luo Q, He Y, Hou D Y, et al. GPo1alkB gene expression for improvement of the degradation of diesel oil by a bacterial consortium[J]. Brazilian Journal of Microbiology, 2015,46(3):649-657.
[75]
罗群,何颖,侯登勇,等.柴油降解基因工程菌的构建及降解特性[J].微生物学通报, 2017,44(6):1271-1279. Luo Q, He Y, Hou D Y, et al. Construction and degradation characteristics of diesel degrading genetically engineered bacteria[J]. Microbiology China, 2017,44(6):1271-1279.
[76]
胡春辉,于浩,赵阳国,等.高效耐盐柴油降解菌的筛选、鉴定及降解基因[J].中国环境科学, 2017,37(11):4251-4258. Hu C H, Yu H, Zhao Y G, et al. Screening, identification and degradation genes of highly efficient salt-tolerant diesel degrading bacteria[J]. China Environmental Science, 2017,37(11):4251-4258.
[77]
Meng L, Bao M T, Sun, P Y. Construction of long-chain alkane degrading bacteria and its application in bioremediation of crude oil pollution[J]. International Journal of Biological Macromolecules, 2018,119:524-532.
[78]
杨庆丽,刘宇峰,姬妍茹,等.苯酚降解工程菌Bacillus subtilis dqly-2的构建[J].生物技术, 2012,22(5):65-68. Yang Q L, Liu Y F, Ji Y R, et al. Construction of Bacillus subtilis dqly-2, an engineered phenol-degrading bacterium[J]. Biotechnology, 2012,22(5):65-68.
[79]
刘如洋.多环芳烃降解菌的遗传改造及石油污染土壤的微生物部分修复[D].济南:济南大学, 2013. Liu R Y. Genetic transformation of polycyclic aromatic hydrocarbon degrading bacteria and microorganism repair petroleum-contaminated soil[D]. Jinan:University of Jinan, 2013.
[80]
Xie Y, Yu F, Wang Q, et al. Cloning of catechol 2,3-dioxygenase gene and construction of a stable genetically engineered strain for degrading crude oil[J]. Indian Journal of Microbiology, 2014,54(1):59-64.
[81]
刘梁.构建基因工程菌降解生物滞留池中多环芳烃的研究[D].北京:清华大学, 2017. Liu L. Biodegradation of polycyclic aromatic hydrocarbons accumulated in bioretention soils using genetically engineered bacterium[D]. Beijing:Tsinghua University, 2017.
[82]
Zhang, X L, Li R X, Song J T, et al. Combined phyto-microbial-electrochemical system enhanced the removal of petroleum hydrocarbons from soil:A profundity remediation strategy[J]. Journal of Hazardous Materials, 2021,420:126592.
[83]
华涛,李胜男,邸志珲,等.微生物降解石油污染物机制研究进展[J].生物技术通报, 2018,34(10):26-34. Hua T, Li S N, Qiu Z H, et al. Advances in the mechanism of microbial degradation of petroleum pollutants[J]. Biotechnology Bulletin, 2018,34(10):26-34.
[84]
Naeem U, Qazi M A. Leading edges in bioremediation technologies for removal of petroleum hydrocarbons[J]. Environmental Science and Pollution Research, 2020,27(22):27370-27382.
[85]
Ghosal D, Ghosh S, Dutta T K, et al. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs):A review[J]. Frontiers In Microbiology, 2016,7:1369.
[86]
陈康,周元祥,吴晓磊,等.原油降解工程菌的构建及其降解性能研究[J].轻工科技, 2008,8:69-70,99. Chen K, Zhou Y X, Wu X L, et al. Construction of crude oil degrading engineering bacteria and their degradation performance[J]. Light Industry Science and Technology, 2008,8:69-70,99.
[87]
Rafeeq H, Afsheen N, Rafique S, et al. Genetically engineered microorganisms for environmental remediation[J]. Chemosphere, 2023,310,136751.
[88]
黄朝.铜绿假单胞菌DN1高产鼠李糖脂基因工程菌株的构建及其对石油污染土壤修复的实验研究[D].西安:西北大学, 2019. Huang C. Enhanced rhamnolipid production by genetically engineered strain and research on bioremediation of petroleum contamianted soil by Pseudomonas aerguginosa DN1[D]. Xian:Northwest University, 2019.
[89]
Pratap S S, Seema G, Neetu P, et al. Surfactin:a review on novel microbial surfactant[J]. International Journal of Bioassays, 2013, 2(5):740-745.
[90]
王苗苗,于慧敏,何欣,等.高产表面活性素的重组枯草芽孢杆菌构建及培养优化[J].生物工程学报, 2020,36(11):2377-2386. Wang M M, Yu H M, He X, et al. Construction and culture optimization of recombinant Bacillus subtilis with high surface activator production[J]. Chinese Journal of Biotechnology, 2020, 36(11):2377-2386.
[91]
Wu Q, Zhi Y, Xu Y. Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168[J]. Metabolic Engineering, 2019,52:87-97.
[92]
宫兆波,郭瑛瑛,张燕萍,等.基因工程菌在石油污染修复中的研究进展与前景[J].环境化学, 2024,43(1):1-13. Gong S B, Guo Y Y, Zhang Y P, et al. Research progress and prospects of genetically engineered bacteria in oil pollution remediation[J]. Environmental Chemistry, 2024,43(1):1-13.
[93]
谢云.高效石油烷烃降解菌及原油降解基因工程菌构建研究[D].西安:西北大学, 2014. Xie Y. Construction of efficient petroleum alkane degrading bacteria and crude oil degrading genetic engineering bacteria[D]. Xi'an:Northwest University, 2014.
[94]
Urgun-Demirtas M, Stark B, Pagilla K. Use of genetically engineered microorganisms (GEMs) for the bioremediation of contaminants[J]. Critical Reviews in Biotechnology, 2006,26(3):145-64.
[95]
Chung J W, Webster D A, Pagilla K R, et al. Chromosomal integration of the Vitreoscilla hemoglobin gene in Burkholderia and Pseudomonas for the purpose of producing stable engineered strains with enhanced bioremediating ability[J]. Journal of Industrial Microbiology and Biotechnology, 2001,27(1):27-33.
[96]
Liu L N, Bilal M, Duan X G, et al. Mitigation of environmental pollution by genetically engineered bacteria-Current challenges and future perspectives[J]. Science of The Total Environment, 2019,667:444-454.
[97]
Eguia F A P, Ramos H R, Kraschowetz S, et al. A new vector for heterologous gene expression in Escherichia coli with increased stability in the absence of antibiotic[J]. Plasmid, 2018,98:22-30.