Abstract:Based on XCO2, the column-averaged dry-air mole fraction of CO2, observed by TanSat from March 2017 to March 2018, the accuracy and reliability of this dataset were comprehensively verified and validated against NASA's OCO-2 satellite observations and CT and TCCON ground measurements in China's mainland. XCO2 characteristics in five main regions were analyzed, and driving effects of natural and socioeconomic factors on atmospheric CO2 concentration were investigated by using Pearson correlation analysis and Geodetector method. The results demonstrate a good consistency between TanSat and OCO-2 observations only with a minor difference between (-3~3)×10-6. In general, XCO2 concentration fluctuates regularly with seasons. In summer obvious regional distinctions were detected. XCO2 concentration in south China was at a higher level and greater than 403×10-6 due to intense human influence. Compared with other regions, in north China, a lower average XCO2 concentration (<401×10-6) was observed due to intense vegetation photosynthesis herein. Whereas XCO2 trend in west China was relatively flat. NDVI is the major natural factor affecting XCO2 concentration and presents a significant linear negative correlation with TanSat observations (r=-0.658, P<0.05). While fossil fuel burning had the strongest explanatory power for XCO2 spatial heterogeneity, and its interaction with various natural factors had much greater effect than each single factor. However, interaction between fossil fuel burning and rainfall would be the most influential one with a q value of 0.495.
李凯旋, 杨丽萍, 张静, 任杰, 王宇. 基于TanSat的中国大陆CO2浓度监测及驱动因子分析[J]. 中国环境科学, 2023, 43(11): 5645-5654.
LI Kai-xuan, YANG Li-ping, ZHANG Jing, REN Jie, WANG Yu. Monitoring and driving factors analysis of CO2 concentration in China's mainland based on TanSat. CHINA ENVIRONMENTAL SCIENCECE, 2023, 43(11): 5645-5654.
WMO. WMO greenhouse gas bulletin:the state of greenhouse gases in the atmosphere based on global observations through 2018[M]. WMO, 2019,2019:1-8.
[2]
IPCC. Climate change 2014:synthesis report summary for policymakers chapter [M]. Cambridge:Cambridge University Press, 2015,2015:2-3.
[3]
刘毅,王婧,车轲,等.温室气体的卫星遥感-进展与趋势[J]. 遥感学报, 2021,25(1):53-64. Liu Y, Wang J, Che K, et al. Satellite remote sensing of greenhouse gases:progress and trends [J]. National Remote Sensing Bulletin, 2021, 25(1):53-64.
[4]
布然,雷莉萍,郭丽洁,等.大气CO2浓度时空变化卫星遥感监测的应用潜力分析[J]. 遥感学报, 2015,19(1):34-45. Bu R, Lei L P, Guo L J, et al. Analysis of temporal and spatial potential applications of satellite remote sensing of atmospheric CO2 concentration monitoring [J]. Journal of Remote Sensing, 2015,19(1):34-45.
[5]
张丽丽,赵明伟,赵娜,等.基于OCO-2卫星观测模拟高精度XCO2的空间分布[J]. 地球信息科学学报, 2018,20(9):1316-1326. Zhang L L, Zhao M W, Zhao N, et al. Modeling the spatial distribution of XCO2 with high accuracy based on OCO-2's observations [J]. Journal of Geo-information Science, 2018,20(9):1316-1326.
[6]
Sheng M Y, Lei L P, Zeng Z C, et al. Global l and 1mapping dataset of XCO2 from satellite observations of GOSAT and OCO-2 from 2009 to 2020[J]. Big Earth Data, 2022,2022:1-21.
[7]
World Bank. CO2 emissions (kt)-China [EB/OL]. https://data.worldbank.org/indicator/en.atm.co2e.kt/locations=CN, 2020.
[8]
邓安健,郭海波,胡洁,等.GOSAT卫星数据监测中国大陆上空CO2浓度时空变化特征[J]. 遥感学报, 2020,24(3):319-325. Deng A J, Guo H B, Hu J, et al. Analysis of temporal and distribution characteristic of CO2 concentration over China based on GOSAT satellite data [J]. Journal of Remote Sensing, 2020,24(3):319-325.
[9]
王震山,绳梦雅,肖薇,等.基于多源碳卫星融合产品的中国地区XCO2与人为CO2排放时空变化[J]. 中国环境科学, 2023,43(3):1053-1063. Wang Z S, Sheng M Y, Xiao W, et al. Spatiotemporal changes of XCO2 and anthropogenic CO2 emission in China based on multi-source carbon satellite fusion product [J]. China Environmental Science, 2023,43(3):1053-1063.
[10]
吕政翰.中国大气二氧化碳浓度时空变化特征及其影响因素分析[D]. 哈尔滨:哈尔滨师范大学, 2019. Lv Z H. Spatial and temporal variation characteristic of atmospheric carbon dioxide concentration and its influencing factors in China [D]. Harbin:Harbin Normal University, 2019.
[11]
钟惠.卫星遥感大气CO2浓度变化与人为排放的关联分析研究[D]. 北京:中国科学院大学(遥感与数字地球研究所), 2019. Zhong H. Correlation analysis of satellites derived atmospheric CO2 variations and anthropogenic emissions [D]. Beijing:University of Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth), 2019.
[12]
Liu Y, Wang J, Yao L, et al. The TanSat mission:preliminary global observations [J]. Science Bulletin, 2018,63(18):1200-1207.
[13]
Yang D, Boesch H, Liu Y, et al. Toward high precision XCO2 retrievals from TanSat observations:retrieval improvement and validation against TCCON measurements [J]. Journal of Geophysical Research:Atmospheres, 2020,125(22):e2020JD032794.
[14]
Bao Z, Zhang X, Yue T, et al. Retrieval and validation of XCO2 from TanSat target mode observations in Beijing [J]. Remote Sensing, 2020,12(18):3063.
[15]
Wang S, van der A R, Stammes P, et al. Carbon dioxide retrieval from TanSat observations and validation with TCCON measurements [J]. Remote Sensing, 2020,12(14):2204.
[16]
Yang D, Hakkarainen J, Liu Y, et al. Detection of anthropogenic CO2 emission signatures with TanSat CO2 and with Copernicus Sentinel-5Precursor (S5P) NO2 measurements:first results [J]. Adv. Atmos. Sci., 2023,40(1):1-5.
[17]
Yang D, Liu Y, Feng L, et al. The first global carbon dioxide flux map derived from TanSat measurements [J]. Adv. atmos. Sci., 2021,38(9):1433-1443.
[18]
Hong X, Zhang P, Bi Y, et al. Retrieval of global carbon dioxide from TanSat satellite and comprehensive validation with TCCON measurements and satellite observations [J]. IEEE Transactions on Geoscience and Remote Sensing, 2022,60:1-16.
[19]
王劲峰,徐成东.地理探测器:原理与展望[J]. 地理学报, 2017,72(1):116-134. Wang J F, Xu C D. Geodetector:principle and prospective [J]. Acta Geographica Sinica, 2017,72(1):116-134.
[20]
王研,马瑞瑞,李娟,等.基于地理探测器的地表水质影响因素研究——以山西省吕梁市为例[J]. 环境科学学报, 2023,43(2):212-222. Wang Y, Ma R, Li J, et al. Study on influential factors of surface water quality using geographic detector-A case of Lvliang City, Shanxi Province[J].Acta Scientiae Circumstantiae, 2023,43(2):212-222.
[21]
龚仓,王亮,王顺祥,等.基于地理探测器的镇域尺度土壤重金属含量空间分异及其影响因素分析[J]. 环境科学, 2022,43(10):4566-4577. Gong C, Wang L, Wang S X, et al. Spatial differentiation and influencing factor analysis of soil heavy metal content at town level based on geographic detector [J]. Environmental Science, 2022,43(10):4566-4577.
[22]
Wunch D, Wennberg P O, Osterman G, et al. Comparisons of the orbiting carbon observatory-2XCO2 measurements with TCCO-N [J]. Atmospheric Measurement Techniques, 2017,10(6):2209-2238.
[23]
Nayak R K, Deepthi E N, Dadhwal V K, et al. Evaluation of NOAA carbon tracker global carbon dioxide products [C]//International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 2014,40(8):287-290.
[24]
Labzovskii L D, Kenea S T, Lindqvist H, et al. Towards robust calculation of interannual CO2 growth signal from TCCON (total carbon column observing network) [J]. Remote Sensing, 2021, 13(19):3868.
[25]
莫露,巫兆聪,张熠.中国XCO2时空分布与影响因素分析[J]. 中国环境科学, 2021,41(6):2562-2570. Mo L, Wu Z C, Zhang Y. Spatial and temporal variations of XCO2 in China and its influencing factors analysis [J]. China Environmental Science, 2021,41(6):2562-2570.
[26]
魏宁.基于卫星遥感的中国大气CO2浓度时空分布特征及其影响因素研究[D]. 上海:华东师范大学, 2017. Wei N. A study of atmospheric CO2 spatial-temporal distribution and its influencing factors in China based on satellite observation [D]. Shanghai:East China Normal University, 2017.
[27]
袁自然,魏立飞,张杨熙,等.优化CARS结合PSO-SVM算法农田土壤重金属砷含量高光谱反演分析[J]. 光谱学与光谱分析, 2020,40(2):567-573. Yuan Z R, Wei L F, Zhang Y X, et al. Hyperspectral inversion and analysis of heavy metal arsenic content in farmland soil based on optimizing CARS combined with PSO-SVM algorithm [J]. Spectroscopy and Spectral Analysis, 2020,40(2):567-573.
[28]
Bi Y M, Wang Q, Yang Z D, et al. Validation of column-averaged dry-air mole fraction of CO2 retrieved from OCO-2 using ground-based FTS measurements [J]. Journal of Meteorological Research, 2018, 32(3):433-443.
[29]
夏玲君,刘立新,李柏贞,等.我国中部地区大气CO2柱浓度时空分布[J]. 中国环境科学, 2018,38(8):2811-2819. Xia L J, Liu L X, Li B Z, et al. Spatial and temporal distribution characteristics of atmospheric CO2 in central China [J]. China Environmental Science, 2018,38(8):2811-2819.
[30]
程巳阳,安兴琴,周凌晞,等.北京上甸子大气本底站CO2浓度的源汇区域代表性研究[J]. 中国环境科学, 2015,35(9):2576-2584. Cheng S Y, An X Q, Zhou L X, et al. CO2 concentration representation of source and sink area at Shangdianzi atmospheric background station in Beijing [J]. China Environmental Science, 2015,35(9):2576-2584.
[31]
李国平.第二十届全国区域经济学学科建设年会[C]//天津:南开大学, 2021. Li G P. The 20th national annual conference on discipline construction of regional economics [C]//Tianjin:Nankai University, 2021.
[32]
国家统计局.中国统计年鉴[M]. 北京:中国统计出版社, 2018, 8(22):261. National Bureau of Statistics of China. China statistical yearbook [M]. Beijing:China Statistics Press, 2018,8(22):261.