Potential of CO2 capture and mineralization of dominant mineral tailings in Yunnan Province
ZHANG Yun1,2, HU Han1, ZHOU Hong-hui1, TIAN Sen-lin1, HUANG Jian-hong1, HU Xue-wei1
1. Faculty of Environment Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; 2. Faculty of Resources and Environment, Xichang University, Xichang 615013, China
Abstract:The modified Steinour equation was used to calculate the CO2 mineralization of different types of tailings in various cities of Yunnan Province to understand the potential for mitigating carbon emissions from the reserve ponds on the "two lists" of tailings ponds in Yunnan Province. The carbon emissions in Yunnan Province from 2011 to 2020 were estimated using the method provided in IPCC Guidelines for National Greenhouse Gas Inventory. The tailings in Honghe Prefecture, Yuxi City, and Kunming City revealed a high potential for CO2 sequestration, accounting for 65.79% of the total CO2 mineralization sequestration of tailings in Yunnan Province. The theoretical carbon sequestration rate of lead-zinc ore, red mud, and tin ore is relatively high, being 0.201, 0.173, and 0.158t/t, respectively. The carbon sequestration of above three tailings accounts for 79.45% of the total carbon sequestration of tailings in Yunnan Province. By using all the reserved tailings for CO2 mineralization and sequestration in Yunnan Province, the accumulated carbon emissions from 2011 to 2020 will be reduced by 2.81%, 3.16% from the industrial sector, and 12.36% from the mining sector. In summary, CO2 capture and mineralization sequestration of tailings could serve as green technologies under dual carbon targets in China.
张云, 胡寒, 周宏辉, 田森林, 黄建洪, 胡学伟. 云南省优势矿产尾矿砂捕集及矿化封存CO2潜力分析[J]. 中国环境科学, 2022, 42(9): 4351-4361.
ZHANG Yun, HU Han, ZHOU Hong-hui, TIAN Sen-lin, HUANG Jian-hong, HU Xue-wei. Potential of CO2 capture and mineralization of dominant mineral tailings in Yunnan Province. CHINA ENVIRONMENTAL SCIENCECE, 2022, 42(9): 4351-4361.
曾庆睿,刘再华.玄武岩风化是重要的碳汇机制吗? [J]. 科学通报, 2017,62(10):1041-1049. Zeng C R, Liu Z H. Is basalt weathering an important carbon sink mechanism? [J]. Scientific Bulletin, 2017,62(10):1041-1049.
[2]
宋贤威,高 扬,温学发,等.中国喀斯特关键带岩石风化碳汇评估及其生态服务功能 [J]. 地理学报, 2016,71(11):1926-1938. Song X W, Gao Y, Wen X F, et al. Rock-weathering-related carbon sinks and associated ecosystem service functions in the karst critical zone in China [J]. Acta Geographica Sinica, 2016,71(11):1926-1938.
[3]
蒲俊兵,蒋忠诚,袁道先,等.岩石风化碳汇研究进展:基于IPCC第五次气候变化评估报告的分析 [J]. 地球科学进展, 2015,30(10): 1081-1090. Pu J B, Jiang Z C, Yuan D X, et al. Some opinions on rock- weathering-related carbon sinks from the IPCC fifth assessment report [J]. Advances in Earth Science, 2015,30(10):1081-1090.
[4]
李朝君,王世杰,白晓永,等.全球主要河流流域碳酸盐岩风化碳汇评估 [J]. 地理学报, 2019,74(7):1319-1332. Li C J, Wang S J, Bai X Y, et al. Estimation of carbonate rock weathering-related carbon sink in global major river basins [J]. Acta Geographica Sinica, 2019,74(7):1319-1332.
[5]
李汇文,王世杰,白晓永,等.中国石灰岩化学风化碳汇时空演变特征分析 [J]. 中国科学:地球科学, 2019,49(6):986-1003. Li H W, Wang S J, Bai X Y, et al. Analysis of temporal and spatial evolution characteristics of chemical weathering carbon sink of limestone in China [J]. Scientia Sinica(Terrae), 2019,49(6):986-1003.
[6]
Liu Z H, Macpherson G L, Groves C, et al. Large and active CO2 uptake by coupled carbonate weathering [J]. earth science reviews, 2018,182:42-49.
[7]
Li H W, Wang S J, Bai X Y, et al. Spatiotemporal distribution and national measurement of the global carbonate carbon sink [J]. Science of the Total Environment, 2018,643:157-170.
[8]
Bastian L, Mologni C, Vigier N, et al. Co-variations of climate and silicate weathering in the Nile Basin during the Late Pleistocene [J]. Quaternary Science Reviews, 2021,264:107012.
[9]
Kump L R, Brantley S L, Arthur M A, et al. Chemical Weathering, Atmospheric CO2, and Climate [J]. Annual Review of Earth & Planetary Sciences, 2000,28(1):611-667.
[10]
Maher K, Chamberlain C P. Hydrologic regulation of chemical weathering and the geologic carbon cycle [J]. Science, 2014,343(6178): 1502-1504.
[11]
Lim M, Han G C, Ahn J W, et al. Environmental remediation and conversion of carbon dioxide (CO2) into useful green products by accelerated carbonation technology [J]. International Journal of Environmental Research and Public Health, 2010,7(1):203-228.
[12]
Liu W Z, Teng L M, Rohani S, et al. CO2 mineral carbonation using industrial solid wastes: A review of recent developments [J]. Chemical Engineering Journal, 2021,416:129093.
[13]
Macdowell N, Florin N, Buchard A, et al. An overview of CO2 capture technologies [J]. Energy & Environmental Science, 2010,3(11): 1645-1669.
[14]
Rim G, Roy N, Zhao D, et al. CO2 utilization in built environment via the PCO2 swing carbonation of alkaline solid wastes with different mineralogy [J]. Faraday Discussions, 2021,230:187-212.
[15]
Lackner K S, Wendt C H, Butt D P, et al. Carbon dioxide disposal in carbonate minerals [J]. Energy, 1995,20(11):1153-1170.
[16]
Lackner K S, Butt D P, Wendt C H. Progress on binding CO2 in mineral substrates [J]. Energy Conversion and Management, 1997, 38:259-264.
[17]
何民宇,刘维燥,刘清才,等.CO2矿物封存技术研究进展 [J]. 化工进展, 2022,41(4):1825-1833. He M Y, Liu W Z, Liu Q C, et al. Research progress in CO2 mineral sequestration technology [J]. Chemical industry and Engineering Progress, 2022,41(4):1825-1833.
[18]
Li J, Hitch M. Mechanical activation of magnesium silicates for mineral carbonation, a review [J]. Minerals Engineering, 2018,128:69-83.
[19]
Fabian M, Shopska M, Paneva D, et al. The influence of attrition milling on carbon dioxide sequestration on magnesium-iron silicate [J]. Minerals Engineering, 2010,23(8):616-620.
[20]
Fara A A, Rayson M R, Brent G F, et al. Formation of magnesite and hydromagnesite from direct aqueous carbonation of thermally activated lizardite [J]. Environmental Progress & Sustainable Energy, 2019,38(3):13244.
[21]
Farhang F, Oliver T K, Rayson M, et al. Experimental study on the precipitation of magnesite from thermally activated serpentine for CO2 sequestration [J]. Chemical Engineering Journal, 2016,303:439-449.
[22]
Xie H, Yue H, Zhu J, et al. Scientific and engineering progress in CO2 mineralization using industrial waste and natural minerals [J]. Engineering, 2015,1(1):150-157.
[23]
Pan S Y, Chiang P C, Chen Y H, et al. Ex situ CO2 capture by carbonation of steelmaking slag coupled with metalworking wastewater in a rotating packed bed [J]. Environmental Science & Technology, 2013,47(7):3308-3315.
[24]
Yadav V S, Prasad M, Khan J, et al. Sequestration of carbon dioxide (CO2) using red mud [J]. Journal of hazardous materials, 2010,176 (1-3):1044-1050.
[25]
Pan S Y, Chung T C, Ho C C, et al. CO2 mineralization and utilization using steel slag for establishing a waste-to-resource supply chain [J]. Scientific Reports, 2017,7(1):17227.
[26]
Ben Ghacham A, Cecchi E, Pasquier L C, et al. CO2 sequestration using waste concrete and anorthosite tailings by direct mineral carbonation in gas-solid-liquid and gas-solid routes [J]. Journal of Environmental Management, 2015,163:70-77.
[27]
Zhang Y, He L, Ma A, et al. CaO-based sorbent derived from lime mud and bauxite tailings for cyclic CO2 capture [J]. Environmental Science and Pollution Research, 2018,25(28):28015-28024.
[28]
Pan S Y, Chiang A, Chang E E, et al. An innovative approach to integrated carbon mineralization and waste utilization: A review [J]. Aerosol & Air Quality Research, 2015,15(3):1072-1091.
[29]
卢映祥,施玉北,孙 涛,等.云南关键矿产重要矿床成矿系列 [J]. 地质与勘探, 2021,57(4):693-727. Lu Y X, Shi Y B, Sun T, et al. Minerogenetic series of key mineral deposits in Yunnan Province,China [J]. Geology and Exploration, 2021, 57(4):693-727.
[30]
Pan S Y, Chen Y H, Fan L S, et al. CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction [J]. Nature Sustainability, 2020,3(5):399-405.
[31]
马铭婧,郗凤明,凌江华,等.二氧化碳矿物封存技术研究进展 [J]. 生态学杂志, 2019,38(12):3854-3863. Ma M J, Xi F M, Ling J H, et al. Research progress on mineral carbonation of carbon dioxide [J]. Chinese Journal of Ecology, 2019, 38(12):3854-3863.
[32]
Huntzinger D N, Gierke J S, Kawatra S K, et al. Carbon dioxide sequestration in cement kiln dust through mineral carbonation [J]. Environmental Science & Technology, 2009,43(6):1986-1992.
[33]
Steinour H H. Some efects of carbon dioxide on mortars and concrete—discussion. [J]. Journal of American Concrete Institute, 1959,30: 905–907.
[34]
中外能源编辑部.部分能源折算标准煤参考系数 [J]. 中外能源, 2009,14(7):18. Sino-foreign energy editorial department . Partial energy conversion standard coal reference coefficient [J]. Sino-Global Energy, 2009,14(7):18.
[35]
苏 凯,陈毅辉,范水生,等.市域能源碳排放影响因素分析及减碳机制研究——以福建省为例 [J]. 中国环境科学, 2019,39(2):859-867. Su K, Chen Y H, Fan S S, et al. Influencing factors and reduction mechanism of carbon emissions at the city-range: An empirical study on Fujian province [J]. China Environmental Science, 2019,39(2): 859-867.
[36]
陈兰兰,卢东方,王毓华.黄金矿山尾矿的组成、危害及资源化利用技术 [J]. 矿产保护与利用, 2020,40(5):161-169. Chen L L, Lu D F, Wang Y H. Composition, harm and resource utilization technology of gold mine tailings [J]. Conservation and Utilization of Mineral Resources, 2020,40(5):161-169.
[37]
罗立群,张晓雪,林永峰,等.江西金尾矿资源的性质与绢云母提取研究 [J]. 矿产综合利用, 2021,(3):1-8. Luo L Q, Zhang X X, Lin Y F, et al. Properties of gold tailing and sericite separation from gold tailing in Jiangxi Province [J]. Multipurpose Utilization of Mineral Resources, 2021,(3):1-8.
[38]
邓代强.极细颗粒矿物全尾砂沉降性能研究 [J]. 化工矿物与加工, 2017,46(2):73-75. Deng D Q. Study on settling properties of very fine particles of full tailings in a gold mine [J]. Industrial Minerals & Processing, 2017, 46(2):73-75.
[39]
李振振.阿希金矿充填材料试验研究 [J]. 新疆有色金属, 2017,40 (3):68-71. Li Z Z. Study on filling materials of axi gold mine [J]. Xinjiang nonferrous metals, 2017,40(3):68-71.
[40]
耿世伟.磷石膏预处理及制硫酸钙晶须的工艺研究 [D]. 昆明:昆明理工大学, 2019. Geng S W. Study on pretreatment of phosphogypsum and preparation of calcium sulfate whiskers [D]. Kunming: Kunming University of Science and Technology, 2019.
[41]
马丽萍.云南磷石膏资源化综合利用现状及发展思考 [J]. 云南化工, 2019,46(11):48-56. Ma L P. Comprehensive utilization of phosphogypsum in Yunnan- present situation and analysis [J]. Yunnan Chemical Industry, 2019, 46(11):48-56.
[42]
穆刘森,马丽萍,杨 静,等.氟磷灰石-碳还原过程热力学分析及钙、硅迁移转化 [J]. 磷肥与复肥, 2021,36(11):25-29. Liu S, Ma L P, Yang J, et al. Thermodynamic analysis of fluoroapatite-carbothermal reduction process and the transport of calcium and silicon elements [J]. Phosphate Fertilizer and Compound Fertilizer, 2021,36(11):25-29.
[43]
肖洪贵.云南云天化股份有限公司磷石膏综合利用现状分析 [J]. 磷肥与复肥, 2019,34(7):35-37. Xiao G. Status analysis on comprehensive utilization of phosphogypsum in Yunnan Yuntianhua Co., Ltd. [J]. Phosphate Fertilizer and Compound Fertilizer, 2019,34(7):35-37.
[44]
闫 贝.磷石膏低温催化分解及过程物相迀移研究 [D]. 昆明:昆明理工大学, 2014. Yan Bei. Mechanism analysis of phosphogypsumdecomposition with catalyst in lowtemperature and Ca, S transformation [D]. Kunming:Kunming University of Science and Technology, 2014.
[45]
殷 霞,马丽萍.冶 金、化工固体废物再生利用研究发展现状 [J]. 再生资源与循环经济, 2020,13(9):31-35. Yin X, Ma L P. Research development of metallurgical and chemical solid waste recycling [J]. Recycling Research, 2020,13(9):31-35.
[46]
赵思琪,马丽萍,杨 杰,等.CO2捕集的研究现状及钙基吸收剂的应用 [J]. 硅酸盐通报, 2017,36(11):3683-3690. Zhao S Q, Ma L P, Yang J, et al. Review and research status of CO2 capture technology and the application of calcium-based sorbent [J]. Bulletin of the Chinese Ceramic Society, 2017,36(11):3683-3690.
[47]
马丽萍.磷石膏资源化综合利用现状及思考 [J]. 磷肥与复肥, 2019,34(7):5-9. Ma L P. Current situation and consideration of comprehensive utilization of phosphogypsum resources [J]. Phosphate & Compound Fertilizer, 2019,34(7):5-9.
[48]
张庆安,高 伟,吴 娟.磷石膏堆存技术 [J]. 化工设计, 2008,(4): 67-71,62. Zhang Q A, Gao W, Wu J. Stacking and preserving technology of gypsum [J]. Chemical Engineering Design, 2008,(4):67-71,62.
[49]
雷 力.从铅锌尾矿中回收磁黄铁矿选矿试验研究 [D]. 昆明:昆明理工大学, 2008. Lei L. Study on mineral processing of iron from a lead-zinc-tailing [D]. Kunming: Kunming University of Science and Technology, 2008.
[50]
李 航,肖唐付,谭显龙,等.云南金顶超大型铅锌矿区尾矿中Cd的形态分析 [J]. 地球与环境, 2009,37(2):111-117. LI H, Xiao T F, Tan X L, et al. Speciation analysis of cadmium in tailings from the Jinding Pb-Zn Mining area, Yunnan Province [J]. Earth and Environment, 2009,37(2):111-117.
[51]
赵 瑜,谢 贤,童 雄.基于工艺矿物学的某铅锌尾矿中资源综合回收可行性研究 [J]. 矿产综合利用, 2021,(4):154-158. Zhao Y, Xie X, Tong X. Feasibility study on multipurpose recovery of resource in lead and zinc tailings based on process mineralogy [J]. Multipurpose Utilization of Mineral Resources 2021,(4):154-158.
[52]
王 华,唐自安,董恒超,等.某铅锌矿全尾砂膏体胶结充填料配比实验研究 [J]. 现代矿业, 2013,29(3):11-14. Wang H, Tang Z A, Dong H C, et al. Experimental study on proportion of paste-tailings cement filling materials of a lead-zinc mine [J]. Modern Mining, 2013,29(3):11-14.
[53]
戚华文,姜艳玲.云南武定迤纳厂铁铜稀土矿床铁精矿、铜精矿和尾矿稀土元素含量调查 [J]. 矿物岩石地球化学通报, 2018,37(6):1114-1122. Qi H W, Jiang Y L. Investigation of rare earth elements in lron concentrates, copper concentrates, and tailings from the yinachang Fe-Cu-REE Deposit, Southwest China [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018,37(6):1114-1122.
[54]
封孝信,康志红,白瑞英.铁尾矿砂石的基本性质研究 [C]. 2013年混凝土与水泥制品学术讨论会论文集, 2013:298-307. Feng X X, Kang Z H, Bai R Y. Study on the basic properties of iron tailings [C]. Proceedings of the 2013 Symposium on Concrete and Cement Products [C]. 2013:298-307.
[55]
牟联胜.云南某铁选厂尾矿回收赤褐铁矿的生产实践 [J]. 现代矿业, 2010,26(1):105-107. Mou L S. Practices of recovering hematite from tailings of an iron concentrator in Yunnan [J]. Modern Mining, 2010,26(1):105-107.
[56]
牛 珊,王 硕.含云母铁尾矿的工艺矿物学研究 [J]. 中国金属通报, 2019,(5):50-52. Niu S, Wang S. Research on process mineralogy of iron tailings containing mica [J]. China Metal Bulletin, 2019,(5):50-52.
[57]
万小金,魏 霞.云南某铁尾矿工艺矿物学特性与选矿工艺研究 [J]. 矿产综合利用, 2012,(4):39-42,63. Wan X J, Wei X. Research on process mineralogy characteristics and mineral processing technology for an iron ore tailing in Yunnan [J]. Multipurpose Utilization of Mineral Resources, 2012,(4):39-42,63.
[58]
郑海雷,张 敏.某铜钼尾矿二次资源综合利用工艺流程设计研究 [J]. 有色金属设计, 2019,46(1):16-21. Zheng H L, Zhang M. Study on process design for comprehensive utilization of copper-molybdenum tailings [J]. Nonferrous Metals Design, 2019,46(1):16-21.
[59]
谢恩龙,高起方,段胜红,等.云南某含金多金属氧硫混合铜矿石选矿试验研究 [J]. 黄金, 2020,41(6):53-57. Xie E L, Gao Q F, Duan S H, et al. Experimental research on the beneficiation of a gold-bearing polymetallic copper ore with mixed oxide and sulfide content in Yunnan [J]. Gold, 2020,41(6):53-57.
[60]
王 晓.金川高镁尾矿酸改性浮选回收铜镍的基础理论与分选工艺 [D]. 昆明:昆明理工大学, 2017. Wang X. Basic theory and separation technology of recovering copper and nickel from Jinchuan high magnesium tailings by acid modification flotation [D]. Kunming: Kunming University of Science and Technology, 2017.
[61]
田 键,申盛伟,叶 斌,等.铜尾矿资源化利用与处置新工艺 [J]. 矿产综合利用, 2016,(3):5-9. Tian J, Shen S W, Ye B, et al. New disposal process and resource recovery of copper tailings [J]. Multipurpose Utilization of Mineral Resources, 2016,(3):5-9.
[62]
谭 波,张冬冬,宁 平,等.铜尾矿综合利用研究进展 [J]. 化工矿物与加工, 2021,50(2):46-51. Tan B, Zhang D D, Ning P, et al. Research progress on comprehensive utilization of copper tailings [J]. Industrial Minerals & Processing, 2021,50(2):46-51.
[63]
Lv C, Wen S M, Bai S J, et al. Recovery Cu from a copper oxide ore by flotation and leaching [J]. Applied Mechanics and Materials, 2014,522-524:1484-1487.
[64]
朱永恒,李克中,张 衡,等.不同植物群丛下铜尾矿复垦地土壤线虫的分布特征 [J]. 应用生态学报, 2015,26(2):570-578. Zhu Y H, Li K Z, Zhang H. Distribution characteristics of soil nematodes in reclaimed land of copper-mine-tailings in different plant associations [J]. Chinese Journal of Applied Ecology, 2015,26(2):570-578.
[65]
商云涛.个旧锡矿尾矿库地球化学特征及环境影响分析 [D]. 北京:中国地质大学(北京), 2012. Shang Y T. Geochemical Characteristics and Environmental Impact Analysis of Ge Ju Tin Tailings [D]. Beijing: China University of Geosciences (Beijing), 2012.
[66]
甘凤伟,方维萱,胡瑞忠.个旧锡多金属矿尾矿物质组成特征研究 [J]. 金属矿山, 2011,(2):157-160. Gan F W, Fang W X, Hu R Z. Research on major elements and mineral composition of tailings on tin-poly7metallic mine in Gejiu Yunnan province [J]. Metal Mine, 2011,(2):157-160.
[67]
仇云华.云锡某尾矿资源再利用选矿工艺试验研究 [J]. 矿业研究与开发, 2015,35(1):30-33. Qiu Y H. Experimental study on mineral processing technology of tailings reutilization in Yunnan Tin Corporation [J]. Mining Research and Development, 2015,35(1):30-33.
[68]
张志勇.矿区废弃地土壤退化等级诊断分析 [D]. 昆明:昆明理工大学, 2008. Zhang Z Y. Diagnosis of soil degraation in mining wasteland [D]. Kunming: Kunming University of Science and Technology, 2008.
[69]
郭玉乾,方维萱,童 祥,等.云南个旧新山矽卡岩钨多金属矿地球化学特征及找矿意义 [J]. 地质通报, 2020,39(11):1827-1839. Guo Y Q, Fang W X, Tong X. Geochemical characteristics of W-Sn-Mo-Bi-Cu-bearing Manganoan skarn and petrogenesis and mineralization of the Xinshan tungsten polymetallic deposit in Gejiu, Yunnan Province, China. [J]. Geological Bulletin of China, 2020,39(11):1827-1839.
[70]
朱炳桥,谢 刚,俞小花,等.赤泥的脱碱及钠硅肥化研究 [J]. 有色金属工程, 2021,11(9):138-144. Zhu B Q, Xie G, Yu X H. Study on application process of dealkalization of red mud [J]. Nonferrous Metals Engineering, 2021,11(9):138-144.
[71]
刘述仁,谢 刚,李荣兴,等.氧化铝厂废渣赤泥的综合利用 [J]. 矿冶, 2015,24(3):72-75. Liu S R, Xie G, Li R X. Comprehensive utilization of the red mud from alumina plant [J].Mining and Metallurgy, 2015,24(3):72-75.
[72]
张林丰,任乐辉,何月田,等.利用制糖副产物土壤化赤泥的效果 [J]. 环境工程学报, 2018,12(4):1228-1236. Zhang L F, Ren L H, He Y T. Effect of soil-conversion red mud by using sugar by-products [J].Chinese Journal of Environmental Engineering, 2018,12(4):1228-1236.
[73]
刘继东,杜 平,任 杰,等.模拟降雨条件下赤泥对土壤盐碱化的影响 [J]. 农业环境科学学报, 2017,36(9):1836-1843. Liu J D, Du P, Ren J, et al. Effects of bauxite residue on soil salinize-alkalization under simulated rainfall conditions [J]. Journal of Agro-Environment Science, 2017,36(9):1836-1843.
[74]
李 辉,曲 洋,姚敏杰,等.赤泥自然成土过程及其微生物驱动机制 [J]. 应用生态学报, 2021,32(4):1452-1460. Li H, Qu Y, Yao M J, et al. Natural soil genesis in red mud and underlying microbial mechanism [J]. Chinese Journal of Applied Ecology, 2021,32(4):1452-1460.
[75]
Pan S Y, Chiang A, Chang E E, et al. An innovative approach to integrated carbon mineralization and waste utilization: A review [J]. Aerosol & Air Quality Research, 2016,15(3):1072-1091.
[76]
王 琪,李 津,赵 颖,等.铝业碱性赤泥的悬浮碳化法脱碱工艺研究 [J]. 环境工程学报, 2009,3(12):2275-2280. Wang Q, Li J, Zhao Y, et al. Study on the dealkalization of red mud by suspension and carbonation [J]. Chinese Journal of Environmental Engineering, 2009,3(12):2275-2280.
[77]
伊元荣,韩敏芳,于立安.利用赤泥捕获CO2反应特性 [J]. 化工学报, 2011,62(9):2635-2642. Yi Y R, Han M F, Yu L A. Reaction characteristics of CO2 captured by red mud [J]. CIESC Journal, 2011,62(9):2635-2642.
[78]
伊元荣,韩敏芳.废气和废渣协同作用脱钠反应特性及机制研究 [J]. 环境科学, 2012,33(7):2522-2527. Yi Y R, Han M F. Characteristics and mechanism of sodium removal by the synergistic action of flue gas and waste solid [J]. Chinese Journal of Environmental Science, 2012,33(7):2522-2527.
[79]
胡鞍钢.中国实现2030年前碳达峰目标及主要途径 [J]. 北京工业大学学报(社会科学版), 2021,21(3):1-15. Hu A G. China's goal of achieving carbon peak by 2030and its main approaches [J]. Journal of Beijing University of Technology (Social Sciences Edition), 2021,21(3):1-15.