Abstract:This review paper discussed agriculture soil pollution in China, focusing on PAEs-degrading strain screening, bacterial community construction, and application approaches. The functional genes and enzymes involved in bacteria-mediated PAEs degradation processes hydrolysis and ring-opening cleavage were reviewed. In conclusion, the application, influential factors, and potential problems associated with PAEs degrading functional bacteria in polluted soil were reviewed. Additionally, the application of this technology in reducing the pollution of PAEs in farmland soil was prospected, in order to provide theoretical and technical reference for the remediation of functional bacteria and agricultural production safety in PAEs-polluted farmland in China.
李鹏飞, 周贤, 王建, 高彦征. 农田土壤中邻苯二甲酸酯降解功能细菌及其应用[J]. 中国环境科学, 2024, 44(3): 1542-1553.
LI Peng-fei, ZHOU Xian, WANG Jian, GAO Yan-zheng. Biodegradation of phthalates degrading bacteria in agriculture soil and its application. CHINA ENVIRONMENTAL SCIENCECE, 2024, 44(3): 1542-1553.
[1] Charles A S, Dennis R P, Thomas F P, et al. The environmental fate of phthalate esters:a literature review[J]. Chemosphere, 1997,35(4):667-749. [2] Tran H T, Nguyen M K, Hoang H G, et al. Composting and green technologies for remediation of phthalate (PAE)-contaminated soil:Current status and future perspectives[J]. Chemosphere, 2022,307:135989. [3] Luo S W, Zhen Z, Teng T T, et al. New mechanisms of biochar- assisted vermicomposting by recognizing different active di-(2- ethylhexyl) phthalate (DEHP) degraders across pedosphere, charosphere and intestinal sphere[J]. Journal of Hazardous Materials, 2023,458:131990. [4] Hu R W, Zhao H M, Xu X H, et al. Bacteria-driven phthalic acid ester biodegradation:Current status and emerging opportunities[J]. Environment International, 2021,154:106560. [5] He L Z, Gielen G, Bolan N S, et al.Contamination and Remediation of Phthalic Acid Esters in Agricultural Soils in China:A Review[J]. Agronomy for Sustainable Development, 2015,35(2):519-534. [6] 张文惠.毛巾中邻苯二甲酸酯的分布特征及皮肤暴露风险评估[D]. 长春:吉林大学, 2023. Zhang W H. Distribution characteristics of phthalates in towels and risk assessment of skin exposure[D]. Changchun:Jilin university, 2023. [7] Li X, Wang Q, Jiang N, et al. Occurrence, source, ecological risk, and mitigation of phthalates (PAEs) in agricultural soils and the environment:a review[J]. Environmental Research, 2022,220:115196. [8] Vikelsøe J, Thomsen M, Carlsen L. Phthalates and nonylphenols in profiles of differently dressed soils[J]. The Science of the Total Environment, 2002,296(1-3):105-116. [9] Peijenburg W J G M, Struijs J. Occurrence of phthalate esters in the environment of the Netherlands[J]. Ecotoxicology and Environmental Safety, 2006,63:204-215. [10] 李玉双,陈琳,郭倩,等.沈阳市新民设施农业土壤中邻苯二甲酸酯的污染特征[J]. 农业环境科学学报, 2017,36(6):1118-1123. Li Y S, Chen L, Guo Q, et al. Pollution characteristics of phthalate esters in greenhouse agricultural so Xinmin, Shenyang City[J]. Journal of Agro-Environment Science, 2017,36(6):1118-1123. [11] 李彬,吴山,梁金明,等.中山市农业区域土壤-农产品邻苯二甲酸酯(PAEs)污染特征[J]. 环境科学, 2015,36(6):2283-2291. Li B, Wu S, Liang J M, et al. Characteristics of phthalic acid esters in agricultural soils and products areas of Zhongshan City, South China[J]. Environmental Science, 2015,36(6):2283-2291. [12] Kong S, Ji Y, Liu L, et a1. Diversities of phthalate esters in suburban agricultural soils and wasteland soil appeared with urbanization in China[J]. Environmental Pollution, 2012,170:161-168. [13] 周斌.黄淮海地区农田土壤邻苯二甲酸酯污染特征与成因研究[D]. 北京:中国农业科学院, 2020. Zhou B. Research on characteristics and mechanism of phthalate acid esters pollution in farmland of the Huang-Huai-Hai region of China[D]. Beijing:Chinese Academy of Agricultural Sciences, 2020. [14] 李国秀,崔利辉,刘伟,等.杨凌区设施蔬菜基地土壤中邻苯二甲酸酯污染状况分析[J]. 湖北农业科学, 2021,60(13):119-122. Li G X, Cui L H Liu W, et al. Analysis of phthalate esters pollution in soils of facility vegetable bases Yangling[J]. Hubei Agricultural Sciences, 2021,60(13):119-122. [15] 冯艳红,应蓉蓉,王国庆,等.中国中西部地区土壤和农产品中邻苯二甲酸酯污染特征及评价[J]. 环境化学, 2022,41(5):1591-1602. Feng Y H, Ying R R, Wang G Q, et al. Pollution characteristics and risk of phthalic acid esters in soils and agro-products in the Midwest areas of China[J]. Environmental Chemistry, 2022,41(5):1591-1602. [16] Chen, Y S, Luo Y M, Zhang H B., et al. Preliminary study on PAEs pollution of greenhouse soils[J]. Acta Pedologica Sinica, 2011,48(3):516-523. [17] 陈玉玉,张光全,张杨,等.甘肃省农业土壤邻苯二甲酸酯累积特征及来源分析[J]. 环境科学, 2022,43(10):4622-4629. Chen Y Y, Zhang G Q, Zhang Y, et al. Accumulation characteristics and sources of PAEs in agricultural soil Gansu province[J]. Environmental Chemistry, 2022,43(10):4622-4629. [18] 王梅,褚玥,段劲生,等.蔬菜中邻苯二甲酸酯的残留研究[J]. 中国农学通报, 2015,31(25):186-191. Wang M, Chu Y, Duan J S, et al. Study on phthalate acid esters residue in vegetables[J]. Chinese Agricultural Science Bulletin, 2015,31(25):186-191. [19] Cheng X M, Ma L L, Xu D D, et al. Mapping of phthalate esters in suburban surface and deep soils around ametropolis-Beijing, China[J]. Journal of Geochemical Exploration, 2015,155:56-61. [20] 玛合巴丽·托乎塔尔汉,张雁鸣,沈琦,等.瓜田土壤中邻苯二甲酸酯的污染特征及其健康风险评估[J]. 现代食品科技, 2020,36(11):287-295. Mahebali T, Zhang Y M, Shen Q, et al. Pollution characteristics and health risk assessment of phthalates in melon field soil[J]. Modern Food Science and Technology, 2020,36(11):287-295. [21] 易鸳鸯,谢芳,胡潇涵,等.新疆五家渠地区不同覆膜年限棉田土壤中邻苯二甲酸酯残留特征[J]. 新疆农业大学学报, 2020,43(3):221-227. Yi Y Y, Xie F, Hu X H, et al. Residual characteristics of phthalate acid esters (PAEs) in cotton fie with different mulching film years in Wujiaqu Area, Xinjiang[J]. Journal of Xinjiang Agricultural University, 2020,43(3):221-227. [22] 郭冬梅,吴瑛.南疆棉田土壤中邻苯二甲酸酯(PAEs)的测定[J]. 干旱环境监测, 2011,25(2):76-79. Guo D M, Wu Y. Detemination of phthalic acid esters of soil in south of Xinjiang cotton fields[J]. Arid Environmental Monitoring, 2011, 25(2):76-79. [23] 梁浩花,王亚娟,陶红,等.银川市东郊设施蔬菜基地土壤中邻苯二甲酸酯污染特征及健康风险评价[J]. 环境科学学报, 2018,38(9):3703-3713. Liang H H, Wang Y J, Tao H, et al. Pollution characteristics of phthalate esters (PAEs) in soils of facility vegetable bases and health risk assessment in eastern suburb of Yinchuan[J]. Acta Scientiae Circumstantiae, 2018,38(9):3703-3713. [24] He M J, Yang T, Yang Z H, et al. Current state, distribution, and sources of phthalate esters and organophosphate esters in soils of the Three Gorges Reservoir region, China[J]. Archives of Environmental Contamination and Toxicology, 2018,74(3):502-513. [25] Guo Y, Wu Q, Kannan K. Phthalate metabolites in urine from China, and implications for human exposures[J]. Environment International, 2011,37(5):893-898. [26] Acharee K, Chi T V, Chitsan L, et al. Occurrence of phthalate esters around the major plastic industrial area in southern Taiwan[J]. Environmental Earth Sciences, 2018,77(12):457. [27] 王晓燕.海南省种植体系中邻苯二甲酸酯污染状况及其暴露风险评估[D]. 昌吉:昌吉学院, 2022. Wang X Y. Contamination status and health risk of phthalate esters in cultivation system of Hainan province[D]. Changji:Changji University, 2022. [28] 李永亮.佳木斯市土壤中酞酸酯类污染调查及评价[J]. 干旱环境监测, 2014,28(1):22-24. Li Y L. Investigation and evaluation on soil pollution for phthalate esters of JiaMusi city[J]. Arid Environmental Monitoring, 2014,28(1):22-24. [29] 黄伟,淡默,舒木水,等.空气中邻苯二甲酸酯分布特征与人群暴露研究进展[J]. 环境与职业医学, 2019,36(4):345-354. Huang W, Dan M, Shu M S, et al. Research advance on distribution characteristics of and population exposure to phthalates in air[J]. Journal of Environmental and Occupational Medicine, 2019,36(4):345-354. [30] Xia X H, Yang L Y, Bu Q W, et al. Levels, distribution, and health risk of phthalate esters in urban soils of Beijing, China[J]. Journal of Environmental Quality, 2011,40(5):1643-1651. [31] Niu L L, Xu Y, Xu C, et al. Status of phthalate esters contamination in agricultural soils across China and associated health risks[J]. Environmental Pollution, 2014,195:16-23. [32] Wang J, Chen G C, Christie P, et al. Occurrence and risk assessment of phthalate esters (PAEs) in vegetables and soils of suburban plastic film greenhouses[J]. Science of the Total Environment, 2015,523:129-137. [33] Ma J, Lu Y G, Teng Y, et al. Occurrence and health risk assessment of phthalate esters in tobacco and soils in tobacco-producing areas of Guizhou province, southwest China[J]. Chemosphere, 2022,303:135193. [34] Boll M, Geiger R, Junghare M, et al. Microbial degradation of phthalates:biochemistry and environmental implications[J]. Environmental microbiology reports, 2020,12(1):3-15. [35] Engelhardt G, Wallnofer P R, Hutzinger O. The microbial metabolism of di-n-butyl phthalate and related dialkyl phthalates[J]. Bulletin of Environmental Contamination and Toxicology, 1975,13(3):342-347. [36] 潘琪,孙淑,周震.2株邻苯二甲酸酯高效降解菌的筛选鉴定及其降解性能[J]. 农业环境科学学报, 2019,38(10):2354-2361. Pan Q, Sun S, Zhou Z F. Isolation, identification, and biodegradation characteristics of two phtha acid esters-degrading strains[J]. Journal of Agro-Environment Science, 2019,38(10):2354-2361. [37] 周长健.高效DEHP降解菌的筛选鉴定及其土壤模拟修复初探[D]. 哈尔滨:东北农业大学, 2016. Zhou C J. Isolation of an efficient Di-(2-ethylhexyl) phthalate degrading bacteria and preliminary study of the soil remediation[D]. Harbin:Northeast Agricultural University, 2016. [38] Tang W J, Zhou Y, Ye B C. Draft genome sequence of a phthalate ester-degrading bacterium,Rhizobium sp. LMB-1, isolated from cultured soil[J]. Genome Announcements, 2015,3(3):e00392-15. [39] Tang W J, Zhang L S, Fang Y, et al. Biodegradation of phthalate esters by newly isolated Rhizobium sp. LMB-1and its biochemical pathway of di-n-butyl phthalate[J]. Journal of Applied Microbiology, 2016, 121(1):177-186. [40] Chen X, Zhang X L, Yang Y, et al. Biodegradation of an endocrine- disrupting chemical di-n-butyl phthalate by newly isolated Camelimonas sp. and enzymatic properties of its hydrolase[J]. Biodegradation, 2015,26:171-182. [41] Kumar V, Maitra S S. Biodegradation of endocrine disruptor dibutyl phthalate (DBP) by a newly isolated Methylobacillus sp. V29b and the DBP degradation pathway[J]. The Biotech Journal, 2016,6:1-12. [42] Nahurira R, Ren L, Song J L, et al. Degradation of di(2-Ethylhexyl) phthalate by a novel Gordonia alkanivorans strain YC-RL2[J]. Current Microbiology, 2017,74(3):309-319. [43] Tao Y, Li H X, Gu J D, et al. Metabolism of diethyl phthalate (DEP) and identification of degradation intermediates by Pseudomonas sp. DNE-S1[J]. Ecotoxicology and Environmental Safety, 2019,173:411- 418. [44] Wang L, Gan D P, Gong L, et al. Analysis of the performance of the efficient di-(2-ethylhexyl) phthalate-degrading bacterium Rhodococcus pyridinovorans DNHP-S2 and associated catabolic pathways[J]. Chemosphere, 2022,306:135610. [45] Rinita D, Suman B, Mousumi B, et al. Evaluation of distinct molecular architectures and coordinated regulation of the catabolic pathways of oestrogenic dioctyl phthalate isomers in Gordonia sp.[J]. Microbiology, 2023,169(6):001353. [46] Wang J, Zhang M Y, Chen T, et al. Isolation and identification of a di-(2-ethylhexyl) phthalate-degrading bacterium and its role in the bioremediation of a contaminated soil[J]. Pedosphere, 2015,25(2):202-211. [47] Ren C Y, Wang Y Y, Wu Y N, et al. Complete degradation of di-n- butyl phthalate by Glutamicibacter sp. strain 0426 with a novel pathway[J]. Biodegradation, 2023, 35(1):87-99. [48] Kou L W, Chen H Y, Zhang X Q, et al. Enhanced degradation of phthalate esters (PAEs) by biochar-sodium alginate immobilised Rhodococcus sp. KLW-1[J]. Environmental Technology, 2023, 2215456. [49] Hsu Y S, Liu Y H, Lin C H, et al. Dual bio-degradative pathways of di-2-ethylhexyl phthalate by a novel bacterium Burkholderia sp. SP4[J]. World Journal of Microbiology and Biotechnology, 2023,39(2):44. [50] Zhao H M, Du H, Lin J, et al. Complete degradation of the endocrine disruptor di-(2-ethylhexyl) phthalate by a novel Agromyces sp. MT-O strain and its application to bioremediation of contaminated soil[J]. Science of the Total Environment, 2016,562:170-178. [51] Bai N L, Li S X, Zhang J Q, et al. Efficient biodegradation of DEHP by CM9consortium and shifts in the bacterial community structure during bioremediation of contaminated soil[J]. Environmental Pollution, 2020,266:115112. [52] Shariat S Y, Pourbabaee A A, Alikhani H A, et al. Biodegradation of DEHP by a new native consortium An6(Gordonia sp. and Pseudomonas sp.) adapted with phthalates, isolated from a natural strongly polluted wetland[J]. Environmental Technology & Innovation, 2021,24:101936. [53] Kou L W, Chen H Y, i Zhang X Q, et al. Biodegradation of di(2- ethylhexyl) phthalate by a new bacterial consortium[J]. Water Science & Technology, 2023,198. [54] Ritu N, Meyawee S, Penjai S, et al. Bacterial community shifts in a di-(2-ethylhexyl) phthalate-degrading enriched consortium and the isolation and characterization of degraders predicted through network analyses[J]. Chemosphere, 2023,310:136730. [55] He Z X, Xiao H L, Tang L, et al. Biodegradation of di-n-butyl phthalate by a stable bacterial consortium, HD-1, enriched from activated sludge[J]. Bioresource Technology, 2013,128:526-532. [56] Jin L, Sun X M, Zhang X J, et al. Co-metabolic biodegradation of DBP by Paenibacillus sp. S-3and H-2[J]. Current Microbiology, 2014,68(6):708-716. [57] Wu X L, Liang R X, Dai Q Y, et al. Complete degradation of di-n-octyl phthalate by biochemical cooperation between Gordonia sp. strain JDC-2 and Arthrobacter sp. strain JDC-32 isolated from activated sludge[J]. Journal of Hazardous Materials, 2010,176(1-3):262-268. [58] Lu M Y, Jiang W K, Gao Q Q, et al. Degradation of dibutyl phthalate (DBP) by a bacterial consortium and characterization of two novel esterases capable of hydrolyzing PAEs sequentially[J]. Ecotoxicology and Environmental Safety, 2020,195:110517. [59] Chatterjee S, Dutta T K. Metabolic cooperation of Gordonia sp. strain MTCC 4818and Arthrobacter sp. strain WY in the utilization of butyl benzyl phthalate:effect of a novel co-culture in the degradation of a mixture of phthalates[J]. Microbiology, 2008,154(11):3338-3346. [60] Zhang K, Liu Y, Chen Q, et al. Biochemical pathyways and enhanced degradation of di-n-octyl phthalate(DOP) in sequencing batch reactor(SBR) by Arthrobacter sp. SLG-4 and Rhodococcus sp. SLG- 6isolated from activated sludge[J]. Biodegradation, 2018,29:171-185. [61] Liu T F, Ning L X, Mei C Y, et al. Synthetic bacterial consortia enhanced the degradation of mixed priority phthalate ester pollutants[J]. Environmental Research, 2023,235:116666. [62] 赵真真.微生物降解邻苯二甲酸酯的途径和分子机理研究[D]. 北京:北京科技大学, 2022. Zhao Z Z. Pathway and moleculai mechanical of phthalic acid esters biodegradation by microbe[D]. Beijing:University of Science and Technology Beijing, 2022. [63] 方月.塑化剂降解菌Acinetbacter sp. LMB-5的性能及其酯酶酶学性质的研究[D]. 上海:华东理工大学, 2017. Fang Y. Biodegradation Characteristics of Phthalates Degrading Strain Acinetbacter sp. LMB-5and Properties Analysis of the Esterase[D]. Shanghai:East China University of Science and Technology, 2017. [64] Xu Y Q, Liu X, Zhao J R, et al.An efficient phthalate ester-degrading Bacillus subtilis:degradation kinetics, metabolic pathway, and catalytic mechanism of the key enzyme[J]. Environmental Pollution, 2021,273:116461. [65] Song X Y, Zhang Z H, Dai Y R, et al.Biodegradation of phthalate acid esters by a versatile PAE-degrading strain Rhodococcus sp. LW-XY12and associated genomic analysis[J]. International Biodeterioration & Biodegradation, 2022,170:105399. [66] Eaton R W. Plasmid-encoded phthalate catabolic pathway in Atthrobacter keyseri 12B[J]. Journal of Bacteriology, 2001,183(12):3689-3703. [67] Fan S H, Wang J H, Li K, et al. Complete genome sequence of Gordonia sp. YC-JH1, a bacterium efficiently degrading a wide range of phthalic acid esters[J]. Journal of Biotechnology, 2018,279:55-60. [68] Dirk E, Silvia L, Ludmila A G, et al. Characterization of a protocatechuate catabolic gene cluster from Rhodococcus opacus 1CP:evidence for a merged enzyme with 4-carboxymuconolactone- decarboxylating and 3-oxoadipate enol-lactone-hydrolyzing activity[J]. Journal of Bacteriology, 1998,180(5):1072-1081. [69] Sakura G I, Yang K Q, Davies J. Characterization of the protocatechuic acid catabolic gene cluster from Streptomyces sp. Strain 2065[J]. Applied and Environmental Microbiology, 2000,66(4):1499- 1508. [70] Marianna A P, Christine F, Manisha D, et al. Catabolism of benzoate and phthalate in Rhodococcus sp. strain RHA1:redundancies and convergence[J]. Journal of Bacteriology, 2005,187(12):4050-4063. [71] José I J, Baltasar M, José L G, et al. Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440[J]. Environmental Microbiology, 2002,4(12):824-841. [72] Chang H K, Zylstra G J. Role of quinolinate phosphoribosyl transferase in degradation of phthalate by burkholderia cepacia. DBO1[J]. Journal of Bacteriology, 1999,181(10):3069-3075. [73] Kumar V, Sharma N, Maitra S S. Comparative study on degradation of dibutyl phthalate by two newly isolated Pseudomonas sp. V21b and Comamonas sp. 51F[J]. Biotechnology Reports, 2017,15:1-10. [74] Nomura Y, Nakagawa M, Ogawa N, et al. Genes in PHT plasmid encoding the initial degradation pathway of phthalate in Pseudomonas Putida[J]. Journal of Fermentation and Bioengineering, 1992,74(6):333-344. [75] Wang Y Z, Zhou Y, Zylstra G J. Molecular analysis of isophthalate and terephthalate degradation by Comamonas testosteroni YZW-D[J]. Environmental Health Perspectives, 1995,103(5):9-12.