Abstract:In order to reduce the threat to human health of phthalate-contaminated crops, this study attempted to enrich and domesticate functional endogenous flora with high efficiency and broad spectrum of PAEs degradation directly from PAEs-contaminated vegetables. The optimal degradation conditions and the community structure were studied, and the colonization efficiency of functional endophytic flora in crops was studied by hydroponic system. High-throughput sequencing results showed that at the taxonomic level the bacterial consortium consisted of Proteobacteria (76.57%), Bacteroidetes (21.04%) and Actinobacteria (2.37%), and at the generic taxonomic level the bacterial consortium consisted of Sphingobacterium (33.03%), Delftia(40.61%), Pseudomonas(11.70%), Achromobacter(3.04%) and Rhizobium(6.90%). In the pure culture system of inorganic salts, the bacterial consortium could degrade 97.08% dimethyl phthalate (DMP, 5mg/L), 94.47% diethyl phthalate (DEP, 5mg/L), 98.02% dibutyl phthalate(DBP, 5mg/L) and 44.82% butyl benzyl phthalate (BBP, 5mg/L) within 7d. The single-factor test results showed that the optimal degradation conditions were: pH 7, 25°C, 1% salinity and 5mg/L substrate concentration. Hydroponic experiments of rice showed that the bacterial consortium could colonize in the rice and significantly increased PAEs removal, compared with the control group, the contents of DMP, DEP, DBP and ∑ PAEs in rice decreased by 41.09%, 45.33%, 63.06% and 32.3% within 15d. The colonization of microflora could also increase the root length, plant height and biomass of rice, and promote the growth of rice. The bacterial consortium has a good application prospect in reducing the accumulation of crop PAEs and ensuring the quality and safety of agricultural products in PAEs-contaminated areas, and could effectively reduce the threat of crop PAEs pollution to human health.
[1] Harris C A, Henttu P, Parker M G, et al. The estrogenic activity of phthalate esters in vitro[J]. Environmental Health Perspectives, 1997,105(8):802-811. [2] Niazi J H, Prasad D T, Karegoudar T B. Initial degradation of dimethylphthalate by esterases from Bacillus species[J]. FEMS Microbiology Letters, 2001,196(2):201-205. [3] Picard K, Lhuguenot J C, Lavier-Canivenc M C, et al. Estrogenic activity and metabolism of n-butyl benzyl phthalate in vitro:identification of the active molecule (s)[J]. Toxicology and Applied Pharmacology, 2001,172(2):108-118. [4] Garcia J M, Robertson M L. The future of plastics recycling[J]. Science, 2017,358(6365):870-872. [5] 贺涛,白小舰,陈隽,等.饮用水源地塑化剂类污染物环境健康风险评估[J]. 中国环境科学, 2013,33(增刊):26-31. He T, Bai X J, Chen J, et al. Environmental health risk assessment of plasticizer contaminants in drinking water source[J]. China Environmental Science, 2013,33(S1):26-31. [6] Zeng H H, Zhang H X, Wu X, et al. Pollution levels and health risk assessment of particulate phthalic acid esters in arid urban areas[J]. Atmospheric Pollution Research, 2017,8(1):188-195. [7] Jianlong W, Ping L, Yi Q. Microbial degradation of di-n-butyl phthalate[J]. Chemosphere, 1995,31(9):4051-4056. [8] 金相籼.有机化合物污染化学:有毒有机物污染化学[M]. 北京:清华大学出版社, 1990:266-275. Jin X X. Organic Compound Pollution Chemistry:Toxic organic matter pollution chemistry[M]. Beijing:Tsinghua University Press, 1990:266-275. [9] Wei L, Li Z, Sun J, et al. Pollution characteristics and health risk assessment of phthalate esters in agricultural soil and vegetables in the Yangtze River Delta of China[J]. Science of The Total Environment, 2020,726:137978. [10] 李彬,吴山,梁金明,等.珠江三角洲典型区域农产品中邻苯二甲酸酯(PAEs)污染分布特征[J]. 环境科学, 2016,37(1):317-324. Li B, Wu S, Liang J M, et al. Distribution characteristics and risk assessment of phthalic acid esters in agricultural products around the pearl River Delta, south China[J]. Environmental Science, 2016,37(1):317-324. [11] Sun K, Liu J, Gao Y Z, et al. Isolation, plant colonization potential and phenanthrene degradation performance of the endophytic bacterium Pseudomonas sp. Ph6-gfp[J]. Scientific Reports, 2014,4(1):5462. [12] Zhu X, Wang W, Crowley D E, et al. The endophytic bacterium Serratia sp. PW7degrades pyrene in wheat[J]. Environmental Science and Pollution Research, 2017,24:6648-6656. [13] Liang D W, Zhang T, Fang H H P, et al. Phthalates biodegradation in the environment[J]. Applied Microbiology and Biotechnology, 2008,80:183-198. [14] Liu L H, Yuan T, Zhang J Y, et al. Diversity of endophytic bacteria in wild rice (Oryza meridionalis) and potential for promoting plant growth and degrading phthalates[J]. Science of The Total Environment, 2022,806:150310. [15] Yuan L, Cheng J, Chu Q, et al. Di-n-butyl phthalate degrading endophytic bacterium Bacillus amyloliquefaciens subsp. strain JR20isolated from garlic chive and its colonization in a leafy vegetable[J]. Journal of Environmental Science and Health, Part B, 2019, 54(8):693-701. [16] 朱洪波,彭永臻,马斌,等.光源,氮源和碳源对紫色非硫细菌生长特性的影响[J]. 中国环境科学, 2019,39(1):290-297. Zhu H B, Peng Y Z, Ma B, et al. Effects of light, nitrogen and carbon on the growth characteristics of purple non-sulfur bacteria[J]. China Environmental Science, 2019,39(1):290-297. [17] 周婷.河道底泥DMP降解功能菌群筛选及效能研究[D]. 哈尔滨:哈尔滨工业大学, 2021. Zhou T. Study on the efficiency of dimethyl phthalate (DMP) degrading functional bacteria group screened from river sediment[D]. Harbin:Harbin Institute of Technology, 2021. [18] 杨旭.修复多环芳烃复合污染水体的高效菌群构建及降解特性[D]. 镇江:江苏科技大学, 2011. Yang X. Construction of High-effective Microbial Flora for Bioremediation of Waters Polluted by PAHs and Its Degradation Charateristics[D]. Zhenjiang:Jiangsu University of Science and Technology, 2011. [19] He Z, Xiao H, Tang L, et al. Biodegradation of di-n-butyl phthalate by a stable bacterial consortium, HD-1, enriched from activated sludge[J]. Bioresource Technology, 2013,128:526-532. [20] 吕律.DBP高效降解菌群的富集及降解特性研究[D]. 开封:河南大学, 2016. Lu L. Study on the enriching of highly efficient degradation bacteria flora of DBP and its degradation characterist[D]. Kaifeng:Henan University, 2016. [21] 李静.邻苯二甲酸酯降解菌的降解特性与降解机制的初步研究[D]. 重庆:西南大学, 2018. Li J. Preliminary study on the degrading charicteristics and mechanisms of phthalic acid esters-degrading bacteria[D]. Chongqing:Southwest University, 2018. [22] Neelakanteshwar K P, Kundapur R, Shouche Y S, et al. Degradation of a plasticizer, di-nbutylphthalate by Delftia sp. TBKNP-05[J]. Current Microbiol, 2006,52:225-230. [23] 马永见.降解邻苯二甲酸酯的固体复合菌剂制备及其降解特性研究[D]. 镇江:江苏科技大学, 2016. Ma Y J. Study on preparation and degradation characteristics of solid composite agents of phthalic acid ester degradation[D]. Zhenjiang:Jiangsu University of Science and Technology, 2016. [24] Feng N X, Feng Y X, Liang Q F, et al. Complete biodegradation of di-n-butyl phthalate (DBP) by a novel Pseudomonas sp. YJB6[J]. Science of The Total Environment, 2021,761:143208. [25] Wang P, Gao J, Zhao Y, et al. Biodegradability of di-(2-ethylhexyl) phthalate by a newly isolated bacterium Achromobacter sp. RX[J]. Science of The Total Environment, 2021,755:142476. [26] Tang W J, Zhang L S, Fang Y, et al. Biodegradation of phthalate esters by newly isolated Rhizobium sp. LMB-1 and its biochemical pathway of di-n-butyl phthalate[J]. Journal of Applied Microbiology, 2016,121(1):177-186. [27] Tao K, Liu X, Chen X, et al. Biodegradation of crude oil by a defined co-culture of indigenous bacterial consortium and exogenous Bacillus subtilis[J]. Bioresource technology, 2017,224:327-332. [28] 柴阳阳,程江峰,余向阳.1株邻苯二甲酸二丁酯降解内生菌的分离鉴定及降解特性[J]. 江苏农业科学, 2018,46(23):296-300. Chai Y Y, Cheng J F, Yv X Y. Isolation and identification of a DBP degrading endophyte and its degradation characteristics[J]. Jiangsu Agricultural Sciences, 2018,46(23):296-300. [29] 李方方,宋建,吕律,等.DBP高效降解菌群的富集及其降解特性研究[J]. 环境科学学报, 2017,37(7):2579-2585. Li F F, Song J, Lv L, et al. Study on the enriching of highly efficient degradation bacteria flora of DBP and its degradation characterist[J]. Journal of Environmental Sciences, 2017,37(7):2579-2585. [30] 赵磊.寒冷地区高效石油降解菌群的筛选与降解的研究[D]. 沈阳:辽宁大学, 2023. Zhao L. Screening of highly efficient oil degrading bacteria in cold regions and study and application of their degradability[D]. Shenyang:Liaoning University, 2023. [31] 周婷,王宏杰,董文艺,等.底泥中降解邻苯二甲酸二甲酯菌群的特性研究[J]. 环境污染与防治, 2023,45(2):188-193. Zhou T, Wang H J, Dong W Y, et al. Characteristics of dimethyl phthalate degrading bacterial consortium in sediment[J]. Environmental Pollution & Control, 2023,45(2):188-193. [32] 范瑞娟,刘雅琴,张琇.嗜盐碱高环PAHs降解菌的分离及其降解特性研究[J]. 农业环境科学学报, 2019,38(6):1280-1287. Isolation and degradation characteristics of haloalkaliphilic high molecular-weight polycyclic aromatic hydro-carbon-degrading bacteria[J]. Journal of Agro-Environment Science, 2019,38(6):1280- 1287. [33] 郭姿璇,王群,佘宗莲.盐度对未驯化微生物活性的影响[J]. 中国环境科学, 2017,37(1):181-187. Guo Z X, Wang Q, She Z L. Effects of salinity on the activity of non-acclimated biomass[J]. China Environmental Science, 2017, 37(1):181-187. [34] 徐莹.高分子量多环芳烃降解菌的筛选,鉴定及其降解特性研究[D]. 南京:南京大学, 2014. Xv Y. Isolation, identification and characteristics of high- molecular-weight polycyclic aromatic hydrocarbons degradation strains[D]. Nanjing:Nanjing University, 2014. [35] 孙倩姝,白洁,李辉,等.混合菌群DBFC对二苯并呋喃的降解特性及其代谢途径[J]. 微生物学报, 2021,61(11):3557-3568. Sun Q S, Bai J, Li H, et al. Characterization of dibenzofuran biodegradation by a bacterial consortium DBFC[J]. Acta Microbiologica Sinica, 2021,61(11):3557-3568. [36] Xu W J, Wan Q, Wang W F, et al. Biodegradation of dibutyl phthalate by a novel endophytic Bacillus subtilis strain HB-T2 under in-vitro and in-vivo conditions[J]. Environmental Technology, 2022,43(13):1917-1926. [37] 陈学斌,赵海明,莫测辉,等.接种邻苯二甲酸酯(PAEs)降解菌缓解PAEs对玉米胁迫效应和机制研究[J]. 生态环境学报, 2017,26(3):493-499. Chen X B, Zhao H M, Mo C H, et al. 2017. Alleviation of phthalic acid esters (PAEs) stress on maize by inoculating PAEs-degrading strain[J]. Ecology and Environmental Sciences, 2017,26(3):493-499. [38] Zhang G, Wang J, Zhao H, et al. PAH degradation and gene abundance in soils and vegetables inoculated with PAH-degrading endophytic bacteria[J]. Applied Soil Ecology, 2021,168:104193. [39] 魏通,段振宇,张贵驰,等.接种功能内生细菌Diaphorobacter sp. Phe15减少蔬菜亚细胞菲积累的体外试验研究[J]. 微生物学报, 2022,62(9):3437-3448. Wei T, Duan Z Y, Zhang G C, et al. In vitro experiment on reducing phenanthrene accumulation in vegetable subcells with inoculation of endophytic bacteria Diaphorobacter sp. Phe15[J]. Acta Microbiologica Sinica, 2022,62(9):3437-3448. [40] Rosenblueth M, Martínez-Romero E. Bacterial endophytes and their interactions with hosts[J]. Molecular Plant-Microbe Interactions, 2006,19(8):827-837. [41] Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, et al. Plant growth-promoting bacterial endophytes[J]. Microbiological Research, 2016,183:92-99.