CO2 emissions from power plants based on multi-source data such as satellite remote sensing
FU Jin-Bei1, LI Meng-Nan2, XU Wei-Da2, WANG Yu-Meng1, LI Huai-Rui2, YIN Jie2, YANG Yu-Kun2, ZHUO Jun-Ling1
1. Appraisal Center for Environment and Engineering, Ministry of Ecology and Environment, Beijing 100041, China; 2. Beijing Insights Value Technology Co., Ltd., Beijing 100073, China
Abstract:This study had estimated CO2 emissions from the Tuoketuo Power Plant using observations from the Orbital Carbon Monitoring Satellite (OCO-3) SAM mode with segmentation, background-interpolation and Gaussian plume model. To verify the estimation results from satellite remote sensing, annual accounting report CO2 data, monthly power generation, and continuous emission monitoring system (CEMS) data were used. The results showed that the hourly CO2 emission rates of the four estimated results were 1900.82, 3353.96, 2941.07, and 3701.71tCO2/h, respectively, with uncertainties of 25.10%, 20.27%, 19.59%, and 29.52%, and the uncertainty mainly came from meteorological data, background, and secondary sources. The satellite remote sensing inversion results of hourly CO2 emission rate were very consistent with the accounting allocation value, with a correlation coefficient of 0.822. The activity data of power plants showed an obvious seasonal and hourly variations, with a relative standard deviation of 14.55% for monthly power generation and 12.35% for NOx hourly emissions.
付金杯, 李梦南, 徐炜达, 王宇萌, 李怀瑞, 尹捷, 杨昱锟, 卓俊玲. 基于卫星遥感等多源数据的发电厂CO2排放分析[J]. 中国环境科学, 2024, 44(4): 1805-1815.
FU Jin-Bei, LI Meng-Nan, XU Wei-Da, WANG Yu-Meng, LI Huai-Rui, YIN Jie, YANG Yu-Kun, ZHUO Jun-Ling. CO2 emissions from power plants based on multi-source data such as satellite remote sensing. CHINA ENVIRONMENTAL SCIENCECE, 2024, 44(4): 1805-1815.
[1] 刘毅,王婧,车轲,等.温室气体的卫星遥感—进展与趋势[J]. Journal of Remote Sensing, 2021,25(1). Liu Y, Wang J, Che C, et al. Satellite remote sensing of greenhouse gases:Progress and trends[J]. National Remote Sensing Bulletin, 2021,25(1):53-64. [2] 刘良云,陈良富,刘毅,等.全球碳盘点卫星遥感监测方法、进展与挑战[J]. 遥感学报, 2022,26(2):243-267. Liu L Y, Chen L F, Liu Y, et al. Satellite remote sensing for global stocktaking:Methods, progress and perspectives[J]. National Remote Sensing Bulletin, 2022,26(2):243-267. [3] Bovensmann H, Burrows J P, Buchwitz M, et al. SCIAMACHY:Mission objectives and measurement modes[J]. Journal of the atmospheric sciences, 1999,56(2):127-150. [4] Kuze A, Suto H, Nakajima M, et al. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring[J]. Applied optics, 2009,48(35):6716-6733. [5] Boesch H, Baker D, Connor B, et al. Global characterization of CO2 column retrievals from shortwave-infrared satellite observations of the orbiting carbon observatory-2 mission[J]. Remote Sensing, 2011, 3(2):270-304. [6] 范唯唯.JAXA成功发射GOSAT-2[J]. 空间科学学报, 2019,39(1):2. Fan W W. JAXA successfully launches GOSAT-2[J]. Journal of Space Science, 2019,39(1):2. [7] Eldering A, Taylor T E, O'Dell C W, et al. The OCO-3 mission:measurement objectives and expected performance based on 1year of simulated data[J]. Atmospheric Measurement Techniques, 2019,12(4):2341-2370. [8] Liu Y, Wang J, Yao L, et al. The TanSat mission:preliminary global observations[J]. Science Bulletin, 2018,63(18):1200-1207. [9] Yang D, Hakkarainen J, Liu Y, et al. Detection of anthropogenic CO2 emission signatures with tanSat CO2 and with copernicus sentinel-5 precursor (S5P) NO2 measurements:first results[J]. Advances in Atmospheric Sciences, 2023,40(1):1-5. [10] Chen L, Letu H, Fan M, et al. An introduction to the Chinese high-resolution Earth observation system:Gaofen-1-7 civilian satellites[J]. Journal of Remote Sensing, 2022. [11] 生态环境监测司.高光谱综合观测卫星成功发射全天时、多要素生态环境遥感监测再添新成员[N/OL].https://www.mee.gov.cn/ywdt/hjywnews/202212/t20221209_1007461.shtml, 2022-12-09. Ministry of Ecology and Environment of the People's Republic of China. The successful launch of the hyperspectral comprehensive observation satellite adds a new member to the all-day, multi-element ecological environment remote sensing monitoring[N/OL]. https://www.mee.gov.cn/ywdt/hjywnews/202212/t20221209_1007461.shtml, 2022-12-09. [12] 生态环境部.大气环境监测卫星成功发射减污降碳协同增效再添利器[N/OL].https://www.mee.gov.cn/ywdt/hjywnews/202204/t20220416_974889.shtml, 2022-04-06. Ministry of Ecology and Environment of the People's Republic of China. Atmospheric environment monitoring satellite successfully launched, another powerful tool for synergy and efficiency in pollution reduction and carbon reduction[N/OL].https://www.mee.gov.cn/ywdt/hjywnews/202204/t20220416_974889.shtml, 2022-04-06. [13] Kuhlmann G, Broquet G, Marshall J, et al. Detectability of CO2 emission plumes of cities and power plants with the copernicus anthropogenic CO2 monitoring (CO2M) mission[J]. Atmospheric Measurement Techniques, 2019,12(12):6695-6719. [14] Polonsky I N, O'Brien D M, Kumer J B, et al. Performance of a geostationary mission, geoCARB, to measure CO2, CH 4and CO column-averaged concentrations[J]. Atmospheric Measurement Techniques, 2014,7(4):959-981. [15] Kasahara M, Kachi M, Inaoka K, et al. Overview and current status of GOSAT-GW mission and AMSR3instrument[C]//Sensors, Systems, and Next-Generation Satellites XXIV. SPIE, 2020,11530:1153007. [16] Bovensmann H, Buchwitz M, Burrows J P, et al. A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications[J]. Atmospheric Measurement Techniques, 2010,3(4):781-811. [17] Hakkarainen J, Szeląg M E, Ialongo I, et al. Analyzing nitrogen oxides to carbon dioxide emission ratios from space:A case study of Matimba Power Station in South Africa[J]. Atmospheric Environment:X, 2021,10:100110. [18] Nassar R, Hill T G, McLinden C A, et al. Quantifying CO2 emissions from individual power plants from space[J]. Geophysical Research Letters, 2017,44(19):10,045-10,053. [19] Nassar R, Mastrogiacomo J P, Bateman-Hemphill W, et al. Advances in quantifying power plant CO2 emissions with OCO-2[J]. Remote Sensing of Environment, 2021,264(1):112579. [20] Bo Z, Chevallier F, Ciais P, et al. Observing carbon dioxide emissions over China's cities and industrial areas with the orbiting carbon observatory-2[J]. Atmospheric Chemistry and Physics, 2020,20(14):8501-8510. [21] Hu Y, Shi Y. Estimating CO2 emissions from large scale coal-fired power plants using OCO-2 observations and emission inventories[J]. Atmosphere, 2021,12(7):811. [22] Taylor T E, Eldering A, Merrelli A, et al. OCO-3 early mission operations and initial (vEarly) XCO2 and SIF retrievals[J]. Remote Sensing of Environment, 2020,251:112032. [23] Doughty R, Kurosu T P, Parazoo N, et al. Global GOSAT, OCO-2, and OCO-3solar-induced chlorophyll fluorescence datasets[J]. Earth System Science Data, 2022,14(4):1513-1529. [24] Zhaoying Z, Luis G, Albert P, et al. Global modeling diurnal gross primary production from OCO-3 solar-induced chlorophyll fluorescence[J]. Remote Sensing of Environment, 2023,285. [25] Oda T, Lei R, Feng S, et al. A Suite of high-resolution atmospheric carbon dioxide simulations in support of the OCO-3 snapshot area mapping (SAM) mode observation:PSU-WRF, CSU-OLAM and NASA GEOS[C]//AGU Fall Meeting. 2019(GSFC-E-DAA-TN76608). [26] Kiel M, Eldering A, Roten D, et al. OCO-3SAM mode:Spatiotemporal variability of XCO 2 over the Los Angeles Megacity[C]//AGU Fall Meeting Abstracts. 2020,2020:A245-01. [27] Roten D, Lin J C, Kunik L, et al. The information content of dense carbon dioxide measurements from space:a high-resolution inversion approach with synthetic data from the OCO-3 instrument[J]. Atmospheric Chemistry and Physics Discussions, 2022:1-43. [28] Solish B, White L. Verification & validation on OCO-3:A case study of V&V for ISS missions[C]//2018IEEE Aerospace Conference. IEEE, 2018. [29] Bell E, O'Dell C W, Taylor T E, et al. Exploring bias in the OCO-3 snapshot area mapping mode via geometry, surface, and aerosol effects[J]. Atmospheric Measurement Techniques, 2023,16(1):109-133. [30] Basilio R R, Bennett M W, Eldering A, et al. Orbiting carbon observatory-3(OCO-3), remote sensing from the international space station (ISS)[C]//Sensors, Systems, and Next-Generation Satellites XXIII. SPIE, 2019,11151:42-55. [31] Guo W, Shi Y, Liu Y, et al. CO2emissions retrieval from coal-fired power plants based on OCO-2/3satellite observations and a Gaussian plume model[J]. Journal of Cleaner Production, 2023,397:136525. [32] Hill T, Nassar R. Pixel size and revisit rate requirements for monitoring power plant CO2 emissions from space[J]. Remote Sensing, 2019,11(13):1608. [33] 秦冰雪,曾静静.全球温室气体遥感卫星发展现状[J]. 中国环境科学, 2023,43(9):4961-4974.DOI:10.19674/j.cnki.issn1000-6923.20230626.004. Qin B X, Zeng J J. Development status of global greenhouse gas remote sensing satellites industry[J]. Chinese Environmental Science, 2023,43(9):4961-4974.DOI:10.19674/j.cnki.issn1000-6923. 20230626.004.