Spatio-temporal Evolution and Influencing Factors of Carbon Emissions in Shaanxi Province
CHEN Yi1,2, LING Li3, GU Zhen-wei1,2, ZHANG Yu1, LIU Jing1,2
1. College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; 2. Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China; 3. Agricultural Inspection and Testing Center of Shaanxi Province, Xi'an 710014, China
Abstract:Based on DMSP/OLS and NPP/VIIRS nighttime light data, the carbon emissions from 2000a to 2020a in Shaanxi Province were estimated in this study. Meanwhile, the spatial-temporal evolution characteristics of carbon emissions were analyzed by the exploratory spatial analysis, hot and cold spot analysis, and the standard deviation ellipse analysis. The spatial Durbin panel model was also established to identify the influencing factors. The results indicated that: (1) The total carbon emissions of Shaanxi Province presented a continuous upward trend from 2000a to 2020a. It also exhibited distinct spatial and temporal heterogeneity with the characteristics of "Northern Shaanxi > Central Shaanxi > Southern Shaanxi" during the study period. (2) The distribution center of carbon emission had gradually moved to the northeast, which illustrated the carbon emissions in the northeast of the research area had increased more significantly than those in other regions. Carbon emission performed a significant positive spatial autocorrelation (i.e., the agglomeration effect), and the transformations from hot spots to cold spots were also prominent. The hot spots expanded in northern Shaanxi, and the cold spots disappeared gradually. (3) Urbanization rate, population size, energy consumption per unit GDP, industrial structure and economic growth were all positively correlated with the carbon emissions in Shaanxi Province. The rapid development of urbanization and the expansion of population were the main driving forces for the carbon emission growth in Shaanxi Province.
[1] Xie Z, Wu R, Wang S. How technological progress affects the carbon emission efficiency? Evidence from national panel quantile regression[J]. Journal of Cleaner Production, 2021,307:127133. [2] 宋苑震,曾坚,王森,等.中国县域碳排放时空演变与异质性[J]. 环境科学, 2023,44(1):549-559. Song Y Z, Zeng J, Wang S, et al. Spatial-temporal evolution and heterogeneity of carbon emissions at county-level in China[J]. Environmental Science, 2023,44(1):549-559. [3] 古圳威,刘京,陈怡,等.陕西渭北旱塬区生境质量及碳储量时空演变分析与模拟[J]. 环境科学, 2023,44(8):4666-4678. Gu Z W, Liu J, Chen Y, et al. Analysis and simulation of the spatiotemporal evolution of habitat quality and carbon storage in the Weibei Dry Plateau Region of Shaanxi[J]. Environmental Science, 2023,44(8):4666-4678. [4] 林彤,杨木壮,吴大放,等.基于InVEST-PLUS模型的碳储量空间关联性及预测——以广东省为例[J]. 中国环境科学, 2022,42(10):4827-4839. Lin T, Yang M Z, Wu D F, et al. Spatial correlation and prediction of land use carbon storage based on the InVEST-PLUS model-A case study in Guangdong Province[J]. China Environmental Science, 2022, 42(10):4827-4839. [5] 黄汉志,贾俊松,张振旭.江西县域土地利用变化碳排放时空演变及影响因素[J]. 生态学报, 2023(20):1-14. Huang H Z, Jia J S, Zhang Z X, et al. Spatiotemporal pattern evolution and influencing factors of land-use carbon emissions in counties, Jiangxi Province[J]. Acta Ecologica Sinica, 2023,(20):1-14. [6] 王兆峰,杜瑶瑶.基于SBM-DEA模型湖南省碳排放效率时空差异及影响因素分析[J]. 地理科学, 2019,39(5):797-806. Wang Z F, Du Y Y. Spatial-temporal differences and influencing factors of carbon emission efficiency in Hunan Province based on SBM-DEA model[J]. Scientia Geographica Sinica, 2019,39(5):797-806. [7] Su L, Wang Y, Yu F. Analysis of regional differences and spatial spillover effects of agricultural carbon emissions in China[J]. Heliyon, 2023,9(6):e16752. [8] 王少剑,高爽,黄永源,等.基于超效率SBM模型的中国城市碳排放绩效时空演变格局及预测[J]. 地理学报, 2020,75(6):1316-1330. Wang S J, Gao S, Huang Y Y, et al. Spatio-temporal evolution and trend prediction of urban carbon emission performance in China based on super-efficiency SBM model[J]. Acta Geographica Sinica, 2020, 75(6):1316-1330. [9] 杨青林,赵荣钦,胡月明,等.京津冀地区经济社会要素与碳排放的时空耦合关系[J]. 生态学报, 2023,43(9):3458-3472. Yang Q L, Zhao R Q, Hu Y M, et al. Spatial-temporal coupling relationship between economic and social factors and carbon emissions in Bejing-Tianjin-Hebeiregion[J]. Acta Ecologica Sinica, 2023,43(9):3458-3472. [10] Cai B, Guo H, Cao L, et al. Local strategies for China's carbon mitigation:An investigation of Chinese city-level CO2 emissions[J]. Journal of Cleaner Production, 2018,178:890-902. [11] 曾诗鸿,李璠,翁智雄,等.我国碳交易试点政策的减排效应及地区差异[J]. 中国环境科学, 2022,42(4):1922-1933. Zeng S H, Li F, Weng Z X, et al. Study on the emission reduction effect of China's carbon trading pilot policy and regional differences[J]. China Environmental Science, 2022,42(4):1922-1933. [12] 张华明,元鹏飞,朱治双.中国城市人口规模、产业集聚与碳排放[J]. 中国环境科学, 2021,41(5):2459-2470. Zhang H M, Yuan P F, Zhu Z S. City population size, industrial agglomeration and CO2emission in Chinese prefectures[J]. China Environmental Science, 2021,41(5):2459-2470. [13] Wu Y, Shi K, Cui Y, et al. Differentiated effects of morphological and functional polycentric urban spatial structure on carbon emissions in China:an empirical analysis from remotely sensed nighttime light approach[J]. International Journal of Digital Earth, 2023,16(1):532-551. [14] Xu Q, Dong Y, Yang R, et al. Temporal and spatial differences in carbon emissions in the Pearl River Delta based on multi-resolution emission inventory modeling[J]. Journal of Cleaner Production, 2019,214:615-622. [15] Li L, Li J, Wang X, et al. Spatio-temporal evolution and gravity center change of carbon emissions in the Guangdong-Hong Kong-Macao greater bay area and the influencing factors[J]. Heliyon, 2023,9(6):e16596. [16] 吴健生,晋雪茹,王晗,等.中国碳排放及影响因素的市域尺度分析[J]. 环境科学, 2023,44(5):2974-2982. Wu J S, Jin X R, Wang H, et al. Analysis of carbon emissions and influencing factors in China based on city scale[J]. Environmental Science, 2023,44(5):2974-2982. [17] Elvidge C D, Baugh K E, Kihn E A, et al. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption[J]. International Journal of Remote Sensing, 1997,18(6):1373-1379. [18] Doll C N H, Muller J P, Elvidge C D. Night-time imagery as a tool for global mapping of socioeconomic parameters and greenhouse gas emissions[J]. Ambio, 2000,29(3):157-162. [19] Su Y, Chen X, Li Y, et al. China's 19-year city-level carbon emissions of energy consumptions, driving forces and regionalized mitigation guidelines[J]. Renewable & Sustainable Energy Reviews, 2014,35:231-243. [20] Shi K, Chen Y, Yu B, et al. Modeling spatiotemporal CO2 (carbon dioxide) emission dynamics in China from DMSP-OLS nighttime stable light data using panel data analysis[J]. Applied Energy, 2016, 168:523-533. [21] Zhao J, Ji G, Yue Y, et al. Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets[J]. Applied Energy, 2019,235:612-624. [22] 曹子阳,吴志峰,匡耀求,等.DMSP/OLS夜间灯光影像中国区域的校正及应用[J]. 地球信息科学学报, 2015,17(9):1092-1102. Cao Z Y, Wu Z F, Kuang Y Q, et al. Correction of DMSP/OLS night-time light images and its application in China[J]. Journal of Geo-information Science, 2015,17(9):1092-1102. [23] 吕倩,刘海滨.京津冀县域尺度碳排放时空演变特征——基于DMSP/OLS夜间灯光数据[J]. 北京理工大学学报(社会科学版), 2019,21(6):41-50. Lv Q, Liu H B. Spatio-temporal evolution characteristics of county scale carbon emissions in Beijing-Tianjin-Hebei Region——a study based on DMSP/OLS nighttime light data[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2019,21(6):41-50. [24] Li X, Xu H, Chen X, et al. Potential of NPP-VIIRS Nighttime Light Imagery for Modeling the Regional Economy of China[J]. Remote Sensing, 2013,5(6):3057-3081. [25] Shi K, Yu B, Huang Y, et al. Evaluating the Ability of NPP-VIIRS Nighttime Light Data to Estimate the Gross Domestic Product and the Electric Power Consumption of China at Multiple Scales:A Comparison with DMSP-OLS Data[J]. Remote Sensing, 2014,6(2):1705-1724. [26] Li X, Li D, Xu H, et al. Intercalibration between DMSP/OLS and VIIRS night-time light images to evaluate city light dynamics of Syria's major human settlement during Syrian Civil War[J]. International Journal of Remote Sensing, 2017,38(21):5934-5951. [27] 杨任飞.基于DMSP/OLS与NPP/VIIRS整合数据的城市群发育过程研究[D]. 西南大学, 2018. Yang R F. Integrating DMSP/OLS and NPP/VIIRS nighttime light data to the application research of urban agglomeration growth process[D]. Southwest University, 2018. [28] 韦彦汀,李思佳,张华.成渝城市群碳排放时空特征及其影响因素[J]. 中国环境科学, 2022,42(10):4807-4816. Wei Y T, Li S J, Zhang H. Temporal-spatial evolution of carbon emission and driving factors in the Chengdu-Chongqing urban agglomeration[J]. China Environmental Science, 2022,42(10):4807-4816. [29] 黄琳琳,王远,张晨,等.闽三角地区碳排放时空差异及影响因素研究[J]. 中国环境科学, 2020,40(5):2312-2320. Huang L L, Wang Y, Zhang C, et al. A spatial-temporal decomposition analysis of CO2 emissions in Fujian Southeast Triangle Region[J]. China Environmental Science, 2020,40(5):2312-2320. [30] 苏泳娴,陈修治,叶玉瑶,等.基于夜间灯光数据的中国能源消费碳排放特征及机理[J]. 地理学报, 2013,68(11):1513-1526. Su Y X, Chen X Z, Ye Y Y, et al. The characteristics and mechanisms of carbon emissions from energy consumption in China using DMSP/OLS night light imageries[J]. Acta Geographica Sinica, 2013, 68(11):1513-1526. [31] 莫惠斌,王少剑.黄河流域县域碳排放的时空格局演变及空间效应机制[J]. 地理科学, 2021,41(8):1324-1335. Mo H B, Wang S J. Spatio-temporal evolution and spatial effect mechanism of carbon emission at county level in the Yellow River Basin[J]. Scientia Geographica Sinica, 2021,41(8):1324-1335. [32] 顾张锋,徐丽华,马淇蔚,等.浙江省都市区碳排放时空演变及其影响因素[J]. 自然资源学报, 2022,37(6):1524-1539. Gu Z F, Xu L H, Ma Q W, et al. Spatio-temporal evolution of carbon emissions in metropolitan areas and its influencing factors:A case study of Zhejiang Province[J]. Journal of Natural Resources, 2022, 37(6):1524-1539. [33] Shi Y, Matsunaga T, Yamaguchi Y, et al. Long-term trends and spatial patterns of PM2.5-induced premature mortality in South and Southeast Asia from 1999to 2014[J]. Science of the Total Environment, 2018,631-632:1504-1514. [34] 曹周亮,张欣蓉,员学锋,等.基于土地利用变化的陕西省县域碳排放时空变化及影响因素研究[J]. 水土保持通报, 2022,42(5):376-385. Cao Z L, Zhang X R, Yuan X F, et al. Spatio-temporal variation and influencing factors of CO2 emission at county scale in Shaanxi Province based on land use change[J]. Bulletin of Soil and Water Conservation, 2022,42(5):376-385. [35] 向书江,杨春梅,谢雨琦,等.近20年重庆市主城区碳排放的时空动态演进及其重心迁移[J]. 环境科学, 2023,44(1):560-571. Xiang S J, Yang C M, Xie Y Q, et al. Spatio-temporal dynamic evolution and gravity center migration of carbon emissions in the main urban area of Chongqing City over the past 20years[J]. Environmental Science, 2023,44(1):560-571. [36] 李建豹,黄贤金,孙树臣,等.长三角地区城市土地与能源消费CO2排放的时空耦合分析[J]. 地理研究, 2019,38(9):2188-2201. Li J B, Huang X J, Sun S C, et al. Spatio-temporal coupling analysis of urban land and CO2 emissions from energy consumption in the Yangtze River Delta region[J]. Geographical Research, 2019,38(9):2188-2201. [37] 赵先超,彭竞霄,胡艺觉,等.基于夜间灯光数据的湖南省县域碳排放时空格局及影响因素研究[J]. 生态科学, 2022,41(1):91-99. Zhao X C, Peng J X, Hu Y J, et al. Spatial-temporal pattern and influence factors of county carbon emissions in Hunan Province based on nightlight data[J]. Ecological Science, 2022,41(1):91-99. [38] 张靖妮,王慧丽.基于市域尺度的陕西省碳排放空间特征分析[J]. 能源环境保护, 2022,36(2):96-103. Zhang J N, Wang H L. Spatial characteristics of carbon emission in Shaanxi Province based on city scale[J]. Energy Environmental Protection, 2022,36(2):96-103. [39] 武娜,沈镭,钟帅.基于夜间灯光数据的晋陕蒙能源消费碳排放时空格局[J]. 地球信息科学学报, 2019,21(7):1040-1050. Wu N, Shen L, Zhong S. Spatio-temporal pattern of carbon emissions based on nightlight data of the Shanxi-Shaanxi-Inner Mongolia Region of China[J]. Journal of Geo-information Science, 2019,21(7):1040-1050. [40] Zhu E, Qi Q, Chen L, et al. The spatial-temporal patterns and multiple driving mechanisms of carbon emissions in the process of urbanization:A case study in Zhejiang, China[J]. Journal of Cleaner Production, 2022,358:131954. [41] Li H, Li B, Liu H, et al. Spatial distribution and convergence of provincial carbon intensity in China and its influencing factors:a spatial panel analysis from 2000to 2017[J]. Environmental Science and Pollution Research, 2021,28(39):54575-54593. [42] 王少剑,谢紫寒,王泽宏.中国县域碳排放的时空演变及影响因素[J]. 地理学报, 2021,76(12):3103-3118. Wang S J, Xie Z H, Wang Z H. The spatiotemporal pattern evolution and influencing factors of CO2emissions at the county level of China[J]. Acta Geographica Sinica, 2021,76(12):3103-3118. [43] 余文梦,张婷婷,沈大军.基于随机森林模型的我国县域碳排放强度格局与影响因素演进分析[J]. 中国环境科学, 2022,42(6):2788-2798. Yu W M, Zhang T T, Shen D J. County-level spatial pattern and influencing factors evolution of carbon emission intensity in China:A random forest model analysis[J]. China Environmental Science, 2022, 42(6):2788-2798. [44] 张杰,陈海,刘迪,等.基于县域尺度土地利用碳排放的时空分异及影响因素研究[J]. 西北大学学报(自然科学版), 2022,52(1):21-31. Zhang J, Chen H, Liu D, et al. The spatial and temporal variation and influencing factors of land use carbon emissions at county scale[J]. Journal of Northwest University (Natural Science Edition), 2022, 52(1):21-31. [45] 孙贵艳,王胜,肖磊.基于夜间灯光数据的长江上游地区能源消费碳排放及影响因素研究[J]. 地域研究与开发, 2020,39(4):159-162,174. Sun G Y, Wang S, Xiao L. Research on carbon emission from energy consumption and infuencing factors in the upper reaches of the Yangtze River based on nightlight data[J]. Areal Research and Development, 2020,39(4):159-162,174. [46] 杜海波,魏伟,张学渊,等.黄河流域能源消费碳排放时空格局演变及影响因素——基于DMSP/OLS与NPP/VIIRS夜间灯光数据[J]. 地理研究, 2021,40(7):2051-2065. Du H B, Wei W, Zhang X Y, et al. Spatio-temporal evolution and influencing factors of energy-related carbon emissions in the Yellow River Basin:Based on the DMSP/OLS and NPP/VIIRS nighttime light data[J]. Geographical Research, 2021,40(7):2051-2065.