Abstract:This study was initiated from the perspective of exogenous stresses on cultivated land in the Fenhe River Basin. Multiple remote sensing data sources were utilized to obtain monitoring indicators such as soil erosion, desertification, salinization, pollution, remote sensing ecological index, and vegetation productivity. A dynamic stability evaluation model within the framework of stress-resistance-response was constructed, analyzing the spatiotemporal evolution characteristics of cultivated land ecosystem stability. Cultivated land was partitioned using two-dimensional graph theory clustering, and corresponding control measures were proposed. The results show that: (1) From 2011 to 2021, certain counties in the Jinzhong Basin and its northeast experienced a significant exacerbation of soil pollution and salinization. The exogenous stress values increased slightly in these areas, while in other regions, a decrease in exogenous stress values predominated, accounting for 91.66% of the total farmland area. Resistance values exhibited a noticeable increase, with 98.69% of cultivated land experiencing an upward trend. Spatially, a basic pattern emerged, with the Jinzhong Basin and Linfen Basin forming dual core growth areas. 83.13% of cultivated land experienced an increase in response values, while declining areas were concentrated in the Jinzhong Basin and its northeast. (2) The cultivated land ecosystem stability increased markedly, with 99.06% of cultivated land experiencing an enhancement. Stability in the Jinzhong Basin showed a slight increase, whereas downstream areas such as the Linfen Basin and river valleys exhibited a significant increase. The disparity in stability between regions gradually diminished, primarily due to improvements in the ecological environment quality. (3) Based on stability and its intrinsic indicators, the study area was divided into the Loess Hilly Area-core governance zone, Jinzhong Basin-urban agricultural zone, Linghuo Mountain Gorge-ecological safeguard zone, Linfen Basin-conservation buffer zone, and River Valley Plain-stable and productive zone. Differential cultivated land protection and management measures were proposed accordingly. The research findings can provide a scientific basis for enhancing the stability of the cultivated land ecosystem.
吕文宝, 徐占军, 杨丽琪, 祁强强, 岳鑫, 李哲. 基于多源遥感数据的耕地生态系统稳定性评价——以汾河流域为例[J]. 中国环境科学, 2024, 44(5): 2937-2947.
LÜ Wen-bao, XU Zhan-jun, YANG Li-qi, QI Qiang-qiang, YUE Xin, LI Zhe. Evaluation of the cultivated land ecosystem stability based on multi-source remote sensing data—A case study of Fenhe River Basin. CHINA ENVIRONMENTAL SCIENCECE, 2024, 44(5): 2937-2947.
[1] 宋小青,欧阳竹.耕地多功能内涵及其对耕地保护的启示[J].地理科学进展, 2012,31(7):859-868. Song X Q, Ouyang Z. Connotation of multifunctional cultivated land and its implications for cultivated land protection[J]. Progress in Geography, 2012,31(7):859-868. [2] 徐洪新,施雪婷.三调耕地成果统计分析的内容与方法[J].测绘与空间地理信息, 2023,46(4):77-80. Xu H X, Shi X T. The contents and methods of the statistical analysis of the Third National Land Survey results[J]. Geomatics&Spatial Information Technology, 2023,46(4):77-80. [3] 中国政府网. 2019年全国耕地质量等级情况公报[EB/OL]. https://www.gov.cn/xinwen/2020/05/13/content_5511129.htm/2020-05-13. Chinese Government Website. National Cultivated Land Quality Rating Bulletin 2019[EB/OL]. https://www.gov.cn/xinwen/2020-05/13/content_5511129.htm/2020-05-13. [4] 孔祥斌.中国耕地保护生态治理内涵及实现路径[J].中国土地科学, 2020,34(12):1-10. Kong X B. The connotation and realization path of ecological governance of cultivated land protection in China[J]. China Land Science, 2020,34(12):1-10. [5] 韩杨.中国耕地保护利用政策演进、愿景目标与实现路径[J].管理世界, 2022,38(11):121-131. Han Y. The policy evolution, vision goal and realization path of China's cultivated land protection and utilization[J]. Management World, 2022,38(11):121-131. [6] Kéfi S, Domínguez-García V, Donohue I, et al. Advancing our understanding of ecological stability[J]. Ecology Letters, 2019, 22(9):1349-1356. [7] 李周园,叶小洲,王少鹏.生态系统稳定性及其与生物多样性的关系[J].植物生态学报, 2021,45(10):1127-1139. Li Z Y, Ye X Z, Wang S P. Ecosystem stability and its relationship with biodiversity[J]. Chinese Journal of Plant Ecology, 2021,45(10):1127-1139. [8] 宋文璐,张华,伏捷,等.辽宁仙人洞国家级自然保护区森林群落稳定性评价[J].浙江农林大学学报, 2022,39(3):505-515. Song W L, Zhang H, Fu J. Evaluation of forest community stability in Xianrendong national nature reserve, Liaoning[J]. Journal of Zhejiang A&F University, 2022,39(3):505-515. [9] 常骏,王忠武,李怡,等.降水及温度对内蒙古克氏针茅草原生态系统稳定性的影响[J].干旱区资源与环境, 2010,24(10):161-164. Chang J, Wang Z W, Li Y, et al. Effect of precipitation and temperature on the ecosystem stability of Stipa kry-lovii Roshev. Steppe in Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 2010,24(10):161-164. [10] 韩洪凌,李志忠.新疆玛纳斯河流域生态系统稳定性研究[J].干旱区资源与环境, 2009,23(10):95-99. Han H L, Li Z H. Research on ecosystem stability in Manas River Valley[J]. Journal of Arid Land Resources and Environment, 2009, 23(10):95-99. [11] 高翔,黄娉婷,王可.宁夏沙坡头干旱沙漠自然保护区生态系统稳定性评估[J].生态学报, 2019,39(17):6381-6392. Gao X, Huang P T, Wang K. Assessment of the ecosystem stability of Shapotou Arid Desert Nature Reserve in Ningxia China[J]. Acta Ecologica Sinica, 2019,39(17):6381-6392. [12] Li X, Lei S, Liu Y, et al. Evaluation of Ecological Stability in Semi-Arid Open-Pit Coal Mining Area Based on Structure and Function Coupling during 2002~2017[J]. Remote Sensing, 2021,13(24):5040. [13] 冯耀宗.人工生态系统稳定性概念及其指标[J].生态学杂志, 2002,(5):58-60. Feng Y Z. Concept and criteria of stability for managed ecosystem[J]. Chinese Journal of Ecology, 2002,(5):58-60. [14] 杨智慧,路欣怡,孔祥斌,等.中国耕地刚性管制与弹性调控框架构建[J].中国土地科学, 2021,35(6):11-19. Yang Z H, Lu X Y, Kong X B, et al. Construction of China's rigid control and resilient adjustment of cultivated land protection[J]. China Land Science, 2021,35(6):11-19. [15] 赵瑞,吴克宁,杨淇钧,等.基于土壤功能与胁迫的耕地土壤健康评价方法[J].农业机械学报, 2021,52(6):333-343. Zhao R Wu K N, Yang Q J, et al. Cultivated land soil health evaluation method based on soil function and soil threat[J]. Transactions of the Chinese Society of Agricultural Machinery, 2021,52(6):333-343. [16] 徐涵秋.区域生态环境变化的遥感评价指数[J].中国环境科学, 2013,33(5):889-897. Xu H Q. A remote sensing index for assessment of regional ecological changes[J]. China Environmental Science, 2013,33(5):889-897. [17] 隋虹均,宋戈,高佳.东北黑土区典型地域耕地生态退化时空分异——以富锦市为例[J].自然资源学报, 2022,37(9):2277-2291. Sui H J, Song G, Gao J. Spatio-temporal differentiation of cultivated land ecological degradation in typical black soil regions of Northeast China:A case study of Fujin city[J]. Journal of Natural Resources, 2022,37(9):2277-2291. [18] 朱文泉,潘耀忠,张锦水.中国陆地植被净初级生产力遥感估算[J].植物生态学报, 2007,(3):413-424. Zhu W Q, Pan Y Z, Feng Z D, et al. Estimation of net primary productivity of Chinese Terrestrial vegetation based of remote sensing[J]. Journal of Plant Ecology, 2007,(3):413-424. [19] 曾永年,向南平,冯兆东,等.Albedo-NDVI特征空间及沙漠化遥感监测指数研究[J].地理科学, 2006,(1):75-81. Zeng Y N, Xiang N P, Feng Z D. Albedo-NDVI space and remote sensing synthesis index models for desertification monitoring[J]. Scientia Geographica Sinica, 2006,(1):75-81. [20] 王飞,丁建丽,伍漫春.基于NDVI-SI特征空间的土壤盐渍化遥感模型[J].农业工程学报, 2010,26(8):168-173,8. Wang F, Ding J L, Wu M C. Remote sensing monitoring models of soil salinization based on NDVI-SI feature space[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010,26(8):168-173,8. [21] 吴芳芳,曹月娥,卢刚,等.准东地区土壤风蚀影响因子分析与风蚀量估算[J].水土保持学报, 2016,30(6):56-60,66. Wu F F, Cao Y E, Lu G, et al. Impact factors of soil wind erosion and estimation of soil loss in Zhundong, Xinjiang[J]. Journal of Soil and Water Conservation, 2016,30(6):56-60,66. [22] 马悦,何洪鸣,赵宏飞.基于GIS和RUSLE的甘南州土壤侵蚀时空演变[J].水土保持研究, 2023,30(3):37-46. Ma Y, He H M, Zhao H F. Spatiotemporal change of soil erosion in Gannan Tibetan autonomous prefecture based on GIS and RUSLE[J]. Research of Soil and Water Conservation, 2023,30(3):37-46. [23] Yang J, Huang X. The 30m annual land cover datasets and its dynamics in China from 1990 to 2022(1.0.0)[Data set]. Zenodo. https://doi.org/10.5281/zenodo.5210928. [24] 李新旺,门明新,王树涛,等.基于过程的河北平原农田生态系统稳定性评价[J].自然资源学报, 2008,(3):430-439. Li X W, Men M X, Wang S T, et al. An evaluation of stability of cultivated land ecosystem based on progress in Hebei Plain[J]. Journal of Natural Resources, 2008,(3):430-439. [25] 丘君,陈利顶,高启晨,等.施工干扰下的生态系统稳定性评价-以西气东输管道工程沿线新疆干旱荒漠区为例[J].干旱区地理, 2003,(4):316-322. Qiu J, Chen L D, Gao Q C, et al. Ecosystem stability assessment:a case study in Xinjiang arid desert region along the West-East Gas Pipeline Project[J]. Arid Land Geography, 2003,(4):316-322. [26] Ren L, Huo J, Xiang X, et al. Environmental conditions are the dominant factor influencing stability of terrestrial ecosystems on the Tibetan plateau[J]. Communications Earth&Environment, 2023,4(1):196. [27] 徐涵秋.水土流失区生态变化的遥感评估[J].农业工程学报, 2013, 29(7):91-97,294. Xu H Q. Assessment of ecological change in soil loss area using remote sensing technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(7):91-97. [28] Sui H, Song G, Liu W, et al. Spatiotemporal variation of cultivated land ecosystem stability in typical regions of Lower Liaohe Plain China based on stress-buffer-response[J]. Science of The Total Environment, 2023,858:160213. [29] MacDougall A S, McCann K S, Gellner G, et al. Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse[J]. Nature, 2013,494(7435):86-89. [30] 顾观海,吴彬,张文主,等.中国陆地边境带建设用地开发强度的时空分异及驱动机制研究[J].中国土地科学, 2022,36(7):94-105. Gu G H, Wu B, Zhang W Z, et al. Spatial and temporal variation and driving mechanism of construction land development intensity in China's border area[J]. China Land Science, 2022,36(7):94-105. [31] 冯树民,马栋才.交通小区的两维图论聚类[J].哈尔滨工业大学学报, 2015,47(9):57-62. Feng S M, Ma D C. Two-dimensional graphic theory on clustering method of small traffic zones[J]. Journal of Harbin Institute of Technology, 2015,47(9):57-62. [32] Chen J, Chi Y, Zhou W, et al. Quantifying the Dimensionalities and Drivers of Ecosystem Stability at Global Scale[J]. Journal of Geophysical Research:Biogeosciences, 2021,126. [33] 邹琴英,师学义,张臻.汾河上游土壤侵蚀时空变化及景观格局的影响[J].水土保持研究, 2021,28(4):15-21. Zou Q Y, Shi X Y, Zhang Z. Effects of temporal and spatial changes of soil erosion and landscape pattern in the upper reaches of the Fenhe River[J]. Research of Soil and Water Conservation, 2021,28(4):15-21. [34] 刘斌,郭星,朱宇恩.基于随机森林模型的土壤重金属源解析——以晋中盆地为例[J].干旱区资源与环境, 2019,33(1):106-111. Liu B, Guo X, Zhu Y E. Analysis of soil heavy metal sources in Jinzhong basin based on random forest mode[J]. Journal of Arid Land Resources and Environment, 2019,33(1):106-111. [35] 申莉,韩旭平,赵兴杰,等.太原市盐碱耕地现状及利用对策[J].农业技术与装备, 2021,(1):62-63,65. Shen L, Han X P, Zhao X J, et al. Current situation and utilization counter measures of saline alkali cultivated land in Taiyuan City[J]. Agricultural Technology&Equipment, 2021,(1):62-63,65. [36] 贾佳瑜,刘小芳,赵勇钢,等.汾河流域下游农田土壤重金属空间分布特征与污染评价[J].干旱区资源与环境, 2021,35(8):132-137. Jia J Y, Liu X F, Zhao Y G, et al. Spatial distribution characteristics and assessment of heavy metal pollution in cultivated land soils in the lower reaches of Fenhe river basin[J]. Journal of Arid Land Resources and Environment, 2021,35(8):132-137. [37] 刘珺,俞博云,杨文府.多尺度地理加权回归模型支持下的汾河流域生态系统服务关系演化机理研究[J].遥感学报, 2023,27(7):1667-1679. Liu J, Yu B Y, Yang W F. Evolution mechanism of ecosystem service relationship in the Fenhe River Basin based on multiscale geographically weighted regression[J]. National Remote Sensing Bulletin, 2023,27(7):1667-1679. [38] 许丽婷,刘海红,黄丽洁,等.2000~2020年汾河流域生态环境与水源涵养时空变化[J].干旱区研究, 2023,40(2):313-325. Xu L, Liu H, Huang L J, et al. Spatial and temporal changes of ecological environment and water conservation in Fenhe River Basin from 2000 to 2020[J]. Arid Zone Research, 2023,40(2):313-325. [39] 李诗瑶,蔡银莺,田霞,等.城乡交错区耕地分区管护及生态补偿模式研究——以上海市浦东新区为例[J].长江流域资源与环境, 2020,29(4):850-858. Li S Y, Cai Y Y, Tian X, et al. Protection zoning and ecological compensation mode of cultivated land at the urban-rural fringe:a case study in Pudong New Area, Shanghai[J]. Resources and Environment in the Yangtze Basin, 2020,29(4):850-858. [40] Kumar R, Kakade V. Tree plantation and soil water conservation enhances climate resilience and carbon sequestration of agro ecosystem in semi-arid degraded ravine lands[J]. Agricultural and Forest Meteorology, 2019,282-283(2020):107857.