Distribution characteristic and its influencing factors of branched tetraether lipids in water columns of Lake Fuxian
TIAN Xiao-qing1, ZHANG Hu-cai2, SUN Hui-ling1
1. Yunnan Key Laboratory of Plateau Geographic Processes and Environment Change, Faculty of Geography, Yunnan Normal University, Kunming 650500, China; 2. Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Resources, Environment and Earth Sciences, Yunnan University, Kunming 650504, China
Abstract:Here we analyze an annual cycle of brGDGTs distribution and abundances in the water column (0~100m) of Lake Fuxian and its influencing factors, including water temperature (WT), dissolved oxygen (DO) and pH values, based on samples of soils, lacustrine surface sediments and suspended particulate matter (SPM) of water columns from an oligotrophic deep lake-Lake Fuxian in southwestern China. The aim of our research is to explore the response of brGDGTs distribution to the dynamic changes of environmental factors in Lake Fuxian from the perspective of real-time observation, to better discriminate the reliability of brGDGTs-based reconstructed palaeotemperatures. The results show that brGDGTs in water column are mainly in-situ production, while brGDGTs contributions from soil and river are quite weak. There is an obvious thermocline and oxycline at a water depth of 40m in Lake Fuxian.The total concentrations of brGDGTs covary with the phytoplankton biomass seasonally. The concentrations of brGDGTs compounds covary with vertical depth and time as well, especially 6-Methyl brGDGTs reaching its maximum in hypolimnion. There is a strong correlation between brⅢa’, MBT’, MBT’6ME and DO, indicating that DO influences the distribution of brGDGTs by influencing 6-methyl brGDGTs. The dynamic variations of DO in water column play an important role in the distribution of bacterial-derived brGDGTs in Lake Fuxian.
田小青, 张虎才, 孙惠玲. 抚仙湖水柱支链四醚膜脂化合物的分布特征及影响因素[J]. 中国环境科学, 2024, 44(10): 5766-5775.
TIAN Xiao-qing, ZHANG Hu-cai, SUN Hui-ling. Distribution characteristic and its influencing factors of branched tetraether lipids in water columns of Lake Fuxian. CHINA ENVIRONMENTAL SCIENCECE, 2024, 44(10): 5766-5775.
[1] 王欢业,刘卫国,张传伦,等.基于甘油二烷基甘油四醚类化合物的指标在陆地系统中的研究进展[J]. 地球环境学报, 2011,2(4):516-524. Wang H Y, Liu W G, Zhang C L, et al. Advances in application of GDGT proxies in terrestrial environment [J]. Journal of Earth Environment, 2011,2(4):516-524. [2] Schouten S, Hopmans E C, Schefuß E, et al. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? [J]. Earth and Planetary Science Letters, 2002,204(1/2):265-274. [3] 李婧婧,谢树成.微生物四醚膜脂化合物在湖泊环境中的研究进展[J]. 矿物岩石地球化学通报, 2015,34(2):277-284. Li J J, Xie S C. Application of microbial membrane tetraether lipids in lacustrine environments:a review [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015,34(2):277-284. [4] Schouten S, Hopmans E C, Sinninghe Damsté J S.The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review [J]. Organic Geochemistry, 2013,54:19-61. [5] Weijers J W H,Schouten S,Van Den Donker J C,et al.Environmental controls on bacterial tetraether membrane lipid distribution in soils [J]. Geochimica et Cosmochimica Acta, 2007,71(3):703-713. [6] Castañeda I S,Schouten S.A review of molecular organic proxies for examining modern and ancient lacustrine environments [J]. Quaternary Science Reviews, 2011,30(21/22):2851-2891. [7] Peterse F, Nicol G W, Schouten S, et al. Influence of soil pH on the abundance and distribution of core and intact polar lipid-derived branched GDGTs in soil [J]. Organic Geochemistry, 2010,41(10): 1171-1175. [8] Weijers J W H, Panoto E, Van Bleijswijk J, et al. Constraints on the Biological Source(s) of the Orphan Branched Tetraether Membrane Lipids [J]. Geomicrobiology Journal, 2009,26(6):402-414. [9] Sinninghe Damsté J S, Hopmans E C, Pancost R D, et al. Newly discovered non-isoprenoid dialkyl diglycerol tetraether lipids in sediments [J]. Chemical Communications, 2000,23:1683-1684. [10] De Jonge C, Hopmans E C, Stadnitskaia A, et al. Identification of novel penta- and hexamethylated branched glycerol dialkyl glycerol tetraethers in peat using HPLC-MS2, GC-MS and GC-SMB-MS [J]. Organic Geochemistry, 2013,54:78-82. [11] Tian L, Wang M, Zhang X,et al.Synchronous change of temperature and moisture over the past 50ka in subtropical southwest China as indicated by biomarker records in a crater lake [J]. Quaternary Science Reviews, 2019,212:121-134. [12] Weijers J W H, Schefuß E, Schouten S, et al. Coupled thermal and hydrological evolution of tropical Africa over the last deglaciation [J]. Science, 2007,315(5819):1701-1704. [13] Zell C, Kim J-H, Moreira-Turcq P, et al. Disentangling the origins of branched tetraether lipids and crenarchaeol in the lower Amazon River: Implications for GDGT-based proxies [J]. Limnology and Oceanography, 2013,58(1):343-353. [14] Peterse F, Van Der Meer J, Schouten S, et al. Revised calibration ofthe MBT-CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils [J]. Geochimica et Cosmochimica Acta, 2012,96(1):215-229. [15] 张佳皓,裴宏业,赵世锦,等.样品保存过程中降解对GDGTs环境代用指标的影响[J]. 地球科学, 2020,45(1):317-329. Zhang J H, Pei H Y, Zhao S J, et al. The impact of degradation on the tetraether-based proxies during the sample storage [J]. Earth Science, 2020,45(1):317-329. [16] 杨欢.陆相微生物脂类GDGTs的古气候重建:现代过程及其在黄土-古土壤和石笋中的应用[D]. 武汉:中国地质大学, 2014. Yang H. The paleoclimate reconstruction based on microbialglycerol dialkyl glycerol tetraethers in terrestrial environments: modern process and its application in Chinese loess-paleosol and stalagmite [D]. Wuhan: China University of Geosciences, 2014. [17] Dang X, Ding W, Yang H, et al. Different temperature dependence of the bacterial brGDGT isomers in 35Chinese lake sediments compared to that in soils [J]. Organic Geochemistry, 2018,119:72-79. [18] Wu J, Yang H, Pancost R D, et al. Variations in dissolved O2ina Chinese lake drive changes in microbial communities and impact sedimentary GDGT distributions [J]. Chemical Geology, 2021,579(30): 120348. [19] 黄钰莹,裴宏业,李婧婧,等.基于脂类的环境pH代用指标:进展与思考[J]. 第四纪研究, 2021,41(4):1094-1114. Huang Y Y, Pei H Y, Li J J, et al. Lipid-based pH proxies and their applications:Progress and perspectives [J]. Quaternary Sciences, 2021,41(4):1094-1114. [20] 党心悦,薛建涛,杨欢,等.中国酸碱度不同湖泊四醚脂类分布影响因素及对湖泊古环境重建的启示[J]. 中国科学:地球科学, 2016,46(2):141-155. Dang X Y, Xue J T, Yang H, et al. Environmental impacts on the distribution of microbial tetraether lipids in Chinese lakes with contrasting pH: Implications for lacustrine paleoenvironmental reconstructions [J]. Science China: Earth Sciences, 2016,46(2): 141-155. [21] Günther F, Thiele A, Gleixner G, et al. Distribution of bacterial and archaeal ether lipids in soils and surface sediments of Tibetan lakes: implications for GDGT-based proxies in saline high mountain lakes [J]. Organic Geochemistry, 2014,67:19-30. [22] Weber Y, Sinninghe Damsté J S, Zopfi J, et al. Redox-dependent niche differentiation provides evidence for multiple bacterial sources of glycerol tetraether lipids in lakes [J]. Proceedings of the National Academy of Sciences, 2018,115(43):10926-10931. [23] Blaga C I, Reichart G J, Vissers E W, et al. Seasonal changes in glycerol dialkyl glycerol tetraether concentrations and fluxes in a perialpine lake: Implications for the use of the TEX86and BIT proxies [J]. Geochimica et Cosmochimica Acta, 2011,75(21):6416-6428. [24] Rissanen A J, Saarela T, Jäntti H, et al. Vertical stratification patterns of methanotrophs and their genetic controllers in water columns ofoxygen-stratified boreal lakes [J]. FEMS Microbiology Ecology, 2021,97(2):fiaa252. [25] Halamka T A, McFarlin J M, Younkin A D, et al. Oxygen limitation can trigger the production of branched GDGTs in culture [J]. Geochemical Perspectives Letters, 2021:36-39. [26] Van Bree L G J, Peterse F, Baxter A J, et al. Seasonal variability and sources of in situ brGDGT production in a permanently stratified African crater lake [J]. Biogeosciences, 2020,17(21):5443-5463. [27] 中国科学院南京地理与湖泊研究所.中国湖泊调查报告[M]. 北京:科学出版社, 2019:504-506. Nanjing Institute of Geography and Limnology, Chinese academy of sciences. Chinese lake survey report [M]. Beijing: Science Press, 2019:504-506. [28] 梁秋实,张文翔,林永静,等.滇中抚仙湖沉积物元素特征与流域侵蚀研究[J]. 中国环境科学, 2020,40(4):1740-1747. Liang Q S, Zhang W X, Lin Y J. Study on elemental characteristics of lacustrine sediments and catchment erosion of Fuxian lake in central Yunnan plateau [J]. China Environmental Science, 2020,40(4):1740- 1747. [29] 吴征镒,朱彦丞.云南植被[M]. 北京:科学出版社, 1987. Wu Z Y, Zhu Y C. The vegetation of Yunnan [M]. Beijing: Science Press, 1987. [30] 熊飞,李文朝,潘继征,等.云南抚仙湖沉水植物分布及群落结构特征[J]. 云南植物研究, 2006,28(3):277-282. Xiong F, Li W C, Pan J Z, et al. Distribution and community structure characteristics of submerged macrophytes in Lake Fuxian, Yunnan Province [J]. Acta Botanica Yunnanica, 2006,28(3):277-282. [31] 张佳皓,黄钰莹,王灿发,等.湖北清江和尚洞石笋GDGTs来源:5,6-甲基支链GDGTs和brGMGTs新证据[J]. 第四纪研究, 2020,40(4): 992-1007. Zhang J H, Huang Y Y, Wang C F, et al. Sources of GDGTs in stalagmites from Heshang Cave, Hubei Province in Central China: New evidence from 5, 6-methyl brGDGTs and brGMGTs [J]. Quaternary Sciences, 2020,40(4):992-1007. [32] Huguet C, Hopmans E C, Febo-Ayala W, et al. An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids [J]. Organic Geochemistry, 2006,37(9):1036-1041. [33] De Jonge C, Stadnitskaia A, Hopmans E C, et al. In situ producedbranched glycerol dialkyl glycerol tetraethers in suspended particulate matter from the Yenisei River, Eastern Siberia [J]. Geochimica et Cosmochimica Acta, 2014,125(15):476-491. [34] Zheng P, Yang H, Pancost R D, et al. Dissolved oxygen concentrations influence the distribution of isoGDGTs in a deep Lake Fuxian in China: Implications for the use of TEX86in stratified lakes [J]. Organic Geochemistry, 2022,173:104485. [35] 周天旭,罗文磊,笪俊,等.抚仙湖垂向分层期间水体细菌群落结构组成及多样性的空间分布[J]. 湖泊科学, 2022,34(5):1642-1655. Zhou T X, Luo W L, Da J, et al. Spatial distribution of bacterioplankton community composition and their diversity in Lake Fuxian during thermal stratification period [J]. Journal of Lake Sciences, 2022,34(5):1642-1655. [36] Van Bree L G J, Peterse F, Van Der Meer M T J, et al. Seasonal variability in the abundance and stable carbon-isotopic composition of lipid biomarkers in suspended particulate matter from a stratified equatorial lake (Lake Chala, Kenya/Tanzania): Implications for the sedimentary record [J]. Quaternary Science Reviews, 2018,192(15): 208-224. [37] 郭雯,黄林培,王明果,等.不同组织碳、氮元素含量和同位素分馏特征研究——以抚仙湖草鱼、鱇浪白鱼为例[J]. 中国环境科学, 2022,42(1):345-355. Guo W, Huang L P, Wang M G, et al. Carbon and nitrogen contents and isotopic fractionation in different tissues of Ctenopharyngodon idellus and Anabarilius grahami in Fuxian Lake [J]. China Environmental Science, 2022,42(1):345-355. [38] Tierney J E, Russell J M, Eggermont H, et al. Environmental controls on branched tetraether lipid distributions in tropical East African lake sediments [J]. Geochimica et Cosmochimica Acta, 2010,74(17):4902- 4918. [39] Loomis S E, Russell J M, Ladd B, et al. Calibration and application of the branched GDGT temperature proxy on East African lake sediments [J]. Earth and Planetary Science Letters, 2012,357(1):277-288. [40] Hu J, Zhou H, Peng P, et al. Seasonal variability in concentrations and fluxes of glycerol dialkyl glycerol tetraethers in Huguangyan Maar Lake, SE China: Implications for the applicability of the MBT-CBT paleotemperature proxy in lacustrine settings [J]. Chemical Geology, 2016,420(20):200-212. [41] Martínez-Sosa P, Tierney J E, Meredith L K. Controlled lacustrinemicrocosms show a brGDGT response to environmental perturbations [J]. Organic Geochemistry, 2020,145:104041. [42] Russell J M, Hopmans E C, Loomis S E, et al. Distributions of 5- and 6-methyl branched glycerol dialkyl glycerol tetraethers (brGDGTs) in East African lake sediment: Effects of temperature, pH, and new lacustrine paleotemperature calibrations [J]. Organic Geochemistry, 2018,117:56-69. [43] Qian S, Yang H, Dong C, et al. Rapid response of fossil tetraether lipids in lake sediments to seasonal environmental variables in a shallow lake in central China: Implications for the use of tetraether- based proxies [J]. Organic Geochemistry, 2019,128:108-121. [44] Yao Y, Zhao J, Vachula R S, et al. Correlation between the ratio of 5-methyl hexamethylated to pentamethylated branched GDGTs (HP5) and water depth reflects redox variations in stratified lakes [J]. OrganicGeochemistry, 2020,147:104076. [45] Loomis S E, Russell J M, Eggermont H, et al. Effects of temperature, pH and nutrient concentration on branched GDGT distributions in East African lakes: Implications for paleoenvironmental reconstruction [J]. Organic Geochemistry, 2014,66:25-37. [46] 郑峰峰,张传伦,陈雨霏,等.支链四醚膜脂在中国土壤中的分布:对MBT/CBT指标作为古环境指标可靠性的评估[J]. 中国科学:地球科学, 2016,46(6):782-798. Zheng F F, Zhang C L, Chen Y F, et al. Branched tetraether lipids in Chinese soils: Evaluating the fidelity of MBT/CBT proxies as paleoenvironmental proxies. Science China: Earth Sciences, 2016, 46(6):782-798. [47] Dearing Crampton-Flood E, Van Der Weijst C M H, Van Der Molen G, et al. Identifying marine and freshwater overprints on soil-derived branched GDGT temperature signals in Pliocene Mississippi and Amazon River fan sediments [J]. Organic Geochemistry, 2021,154: 104200. [48] 袁红香,孙惠玲,段立曾,等.抚仙湖悬浮颗粒物正构烷烃来源及季节特征[J]. 中国环境科学, 2021,41(6):2812-2820. Yuan H X, Sun H L, Duan L Z, et al. The sources and seasonal variation characteristics of n-alkanes in suspended particulate matter in Fuxian Lake [J]. China Environmental Science, 2021,41(6):2812- 2820. [49] Park E, Hefter J, Fischer G, et al. TEX86 in sinking particles in three eastern Atlantic upwelling regimes [J]. Organic Geochemistry, 2018, 124:151-163. [50] Yamamoto M, Shimamoto A, Fukuhara T, et al. Glycerol dialkyl glycerol tetraethers and TEX86index in sinking particles in the western North Pacific [J]. Organic Geochemistry, 2012,53:52-62. [51] Schouten S, Pitcher A, Hopmans E C, et al. Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids in the Arabian Sea oxygen minimum zone: I. Selective preservation and degradation in the water column and consequences for the TEX86 [J]. Geochimica et Cosmochimica Acta, 2012,98:228-243. [52] Feng X, Zhao C, D’Andrea W J, et al. Temperature fluctuations during the Common Era in subtropical southwestern China inferred from brGDGTs in a remote alpine lake [J]. Earth and Planetary Science Letters, 2019,510(15):26-36. [53] Zhao B, Russell J M, Tsai V C, et al. Evaluating global temperature calibrations for lacustrine branched GDGTs: Seasonal variability, paleoclimate implications, and future directions [J]. Quaternary Science Reviews, 2023,310(15):108124. [54] Schoon P L, De Kluijver A, Middelburg J J, et al. Influence of lake water pH and alkalinity on the distribution of core and intact polar branched glycerol dialkyl glycerol tetraethers (GDGTs) in lakes [J]. Organic Geochemistry, 2013,60:72-82. [55] Naafs B D A, Gallego-Sala A V, Inglis G N, et al. Refining the global branched glycerol dialkyl glycerol tetraether (brGDGT) soil temperature calibration [J]. Organic Geochemistry, 2017,106:48-56. [56] 王明达,梁洁,侯居峙,等.青藏高原湖泊表层沉积物GDGTs分布特征及其影响因素[J]. 中国科学:地球科学, 2016,46(2):167-183. Wang M D, Liang J, Hou J Z, et al. Distribution of GDGTs in lake surface sediments on the Tibetan Plateau and its influencing factors [J]. Science China: Earth Sciences, 2016,46(2):167-183. [57] Buckles L K, Weijers J W H, Verschuren D, et al. Sources of core and intact branched tetraether membrane lipids in the lacustrine environment: Anatomy of Lake Challa and its catchment, equatorial East Africa [J]. Geochimica et Cosmochimica Acta, 2014,140(1): 106-126. [58] Ślesak I, Kula M, Ślesak H, et al. How to define obligatory anaerobiosis? An evolutionary view on the antioxidant response system and the early stages of the evolution of life on Earth [J]. Free Radical Biology and Medicine, 2019,140:61-73. [59] 刘晓曦,陈丽,蒋伊能,等.抚仙湖浮游植物群落时空变化特征及其与环境因子的关系[J]. 湖泊科学, 2020,32(3):793-803. Liu X X, Chen L, Jiang Y N, et al. Spatiotemporal variation of phytoplankton communities and their relationship with environmental factors in Lake Fuxian [J]. Journal of Lake Sciences, 2020,32(3): 793-803.