Coordinated control of PM2.5 and O3 compound pollution in Jincheng City based on the WRF-CMAQ model
LI Chen1, ZHANG Zhi-juan1, CHEN Xi1,2, YE Cui-ping1
1. College of Environment and Ecology, Taiyuan University of Technology, Jinzhong 030600, China; 2. Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Jinzhong 030600, China
Abstract:This study used the WRF-CMAQ model to simulate and conduct source apportionment for a case of compound pollution in Jinzhong City. By designing 49 different scenarios of VOCs and NOx emission reductions and combining them with EKMA curves to evaluate the scientific reduction ratios of their precursors. The results revealed that industrial and traffic sources are the main contributors to VOCs and NOx in Jincheng City. O3 pollution is mainly influenced by NOx levels, whereas PM2.5 pollution is primarily controlled by VOCs. Considering non-extreme reduction scenarios, for O3 pollution control alone, the optimal VOCs/NOx reduction ratio is 1:2; for PM2.5 pollution control alone, the optimal reduction ratio is 2:1. When considering the coordinated control of both PM2.5 and O3 pollution, the best precursor reduction ratio of VOCs to NOx is 2:1.
李晨, 张芝娟, 陈曦, 叶翠平. 基于WRF–CMAQ的晋城市PM2.5与O3复合污染协同控制[J]. 中国环境科学, 2024, 44(12): 6569-6577.
LI Chen, ZHANG Zhi-juan, CHEN Xi, YE Cui-ping. Coordinated control of PM2.5 and O3 compound pollution in Jincheng City based on the WRF-CMAQ model. CHINA ENVIRONMENTAL SCIENCECE, 2024, 44(12): 6569-6577.
[1] Feng Y, Ning M, Lei Y, et al. Defending blue sky in China: Effectiveness of the "Air pollution prevention and control action plan" on air quality improvements from 2013 to 2017[J]. Journal of Environmental Management, 2019,252:109603. [2] Zhao H, Chen K, Liu Z, et al. Coordinated control of PM2.5 and O3 is urgently needed in China after implementation of the "Air pollution prevention and control action plan" [J]. Chemosphere, 2021,270: 129441. [3] 李红,彭良,毕方,等.我国PM2.5与臭氧污染协同控制策略研究[J]. 环境科学研究, 2019,32:1763-1778. Li H, Peng L, Bing F, et al. Strategy of coordinated control of PM2.5 and ozone in China [J]. Research of Environmental Sciences, 2019, 32:1763-1778. [4] 牛笑笑,钟艳梅,杨璐,等.2015~2020年中国城市PM2.5-O3复合污染时空演变特征[J]. 环境科学, 2023,44:1830-1840. Niu X X, Zhong Y M, Yang L et al. Spatiotemporal evolution characteristics of PM2.5-O3 compound pollution in Chinese cities from 2015 to 2020[J]. Environmental Science, 2023,44:1830-1840. [5] Pui D Y H, Chen S C, Zuo Z. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation [J]. Particuology, 2014,13: 1-26. [6] Xie Y, Dai H, Zhang Y, et al. Comparison of health and economic impacts of PM2.5 and ozone pollution in China [J]. Environment International, 2019,130:104881. [7] Juran S, Grace J, Urban O. Temporal changes in ozone concentrations and their impact on vegetation [J]. Atmosphere, 2021,12(1)82. [8] 孙金金,谢晓栋,秦墨梅,等.不同时间尺度上PM2.5与臭氧协同关系及其影响因素分析[J]. 科学通报, 2022,67:2018-2028. Sun J J, Xie X D, Qin M M, et al. Analysis of coordinated relationship between PM2.5 and ozone and its affecting factors on different timescales [J]. Chin Sci Bull, 2022,67:2018-2028. [9] Meng Z, Dabdub D, Seinfeld J H. Chemical coupling between atmospheric ozone and particulate matter [J]. Science, 1997,277(5322):116-119. [10] Ojha N, Soni M, Kumar M, et al. Mechanisms and pathways for coordinated control of Fine particulate matter and ozone [J]. Current Pollution Reports, 2022,8(4):594-604. [11] 姜华,高健,李红,等.我国大气污染协同防控理论框架初探[J]. 环境科学研究, 2022,35:601-610. Jiang H, Gao J, Li H, et al. Preliminary research on theoretical framework of cooperative control of air pollution in China [J]. Research of Environmental Sciences, 2022,35:601-610. [12] Shi C, Wang S, Liu R, et al. A study of aerosol optical properties during ozone pollution episodes in 2013 over Shanghai, China [J]. Atmospheric Research, 2015,153:235-249. [13] Yang Y, Hong L, Si J L. Simulated impacts of sulfate and nitrate aerosol formation on surface-layer ozone concentrations in China [J]. Atmospheric and Oceanic Science Letters, 2014,7(5):441-446. [14] 董赵鑫,邢佳,丁点,等.长江三角洲区域细颗粒物和臭氧对前体物减排的响应及政策启示[J]. 科学通报, 2022,67:2079-2088. Dong Z X, Xing J, Ding D, et al. Response of fine particulate matter and ozone to precursors emission reduction in the Yangtze River Delta and its policy implications [J]. Chin Sci Bull, 2022,67:2079-2088. [15] 张新民,范西彩,赵文娟,等.关于O3和PM2.5协同控制的一些思考[J]. 环境影响评价, 2021,43:25-29. Zhang X M, Fan X C, Zhao W J, et al. Some thoughts on coordinated control of O3 and PM2.5 [J]. Environmental Impact Assessment, 2021, 43:25-29. [16] 刘鑫,史旭荣,雷宇,等.中国PM2.5与O3协同控制路径[J]. 科学通报, 2022,67:2089-2099. Liu X, Shi X R, Lei Y, et al. Path of coordinated control of PM2.5 and ozone in China [J]. Chin Sci Bull, 2022,67:2089-2099. [17] 张恺乐,褚旸晰,储王辉,等.我国城市地区PM2.5和O3污染相关性:2017~2022年时空演变特征与协同防控启示[J]. 中国环境科学, 2024,44(6):3004-3011. Zhang K L, Chu Y X, Chu W H, et al. Spatiotemporal variation of PM2.5 and O3 pollution correlation in urban areas in China from 2017 to 2022: An Insight into Synergistic Prevention and Control [J]. China Environmental Science, 2024,44(6):3004-3011. [18] 冯凝,唐梦雪,李孟林,等.深圳市城区VOCs对PM2.5和O3耦合生成影响研究[J]. 中国环境科学, 2021,41:11-17. Feng N, Tang M X, Li M L, et al. Research on the influence of VOCs on the coupling generation of PM2.5 and O3 in Shenzhen [J]. China Environmental Science, 2021,41:11-17. [19] 王君悦,刘朝顺.基于WRF-Chem的长三角地区PM2.5和O3污染协同控制研究[J]. 环境科学学报, 2022,42:32-42. Wang J Y, Liu C S. Study on the synergistic control of PM2.5 and O3 pollution in the Yangtze River Delta region based on WRF-Chem model [J]. Acta Scientiae Circumstantiae, 2022,42:32-42. [20] 卞锦婷,黄凌,李红丽,等.上海市PM2.5和臭氧复合污染期多路径减排效果评估[J]. 环境科学研究, 2023,36:314-324. Bian J T, Huang L, Li H L, et al. Evaluation of the effectiveness of multiple emission reduction pathways during a concurrent PM2.5 and ozone pollution in Shanghai [J]. Research of Environmental Sciences, 2023,36:314-324. [21] 李泱,常莉敏,吕沛诚,等.兰州市大气臭氧生成的敏感性分析及其前体物减排对策建议[J]. 环境科学学报, 2021,41:1628-1639. Li Y, Chang L M, Lv P C, et al. Sensitivity analysis of atmospheric ozone formation and its precursors emission reduction countermeasures in Lanzhou city [J]. Acta Scientiae Circumstantiae, 2021,41:1628-1639. [22] Hui L, Ma T, Gao Z, et al.Characteristics and sources of volatile organic compounds during high ozone episodes: A case study at a site in the eastern Guanzhong Plain, China [J]. Chemosphere, 2021,265: 129072. [23] 郑镇森,窦建平,张国涛,等.华北工业城市夏季大气臭氧生成机制及减排策略[J]. 环境科学, 2023,44:1821-1829. Zheng Z S, Dou J P, Zhang G T, et al. Photochemical mechanism and control strategy optimization for summertime ozone pollution in an industrial city in the North China Plain [J]. Environmental Science, 2023,44:1821-1829. [24] 张鹏辉,胡冬梅,彭林,等.晋城市大气VOCs污染特征及来源解析[J]. 中国环境科学, 2023,43:4525-4533. Zhang P H, Hu D M, Peng L, et al. Characteristics and sources of atmospheric VOCs pollution in Jincheng [J]. China Environmental Science, 2023,43:4525-4533. [25] 李晨,张芝娟,叶翠平.山西省PM2.5与O3污染特征及影响因素分析[J]. 环境科学学报, 2024,44:299-309. Li C, Zhang Z Z, Ye C P. Analysis of PM2.5 and O3 pollution characteristics and influencing factors in Shanxi Province [J]. Acta Scientiae Circumstantiae, 2024,44:299-309. [26] Wang K, Gao C, Wu K, et al. ISAT v2.0: an integrated tool for nested-domain configurations and model-ready emission inventories for WRF-AQM [J]. Geosci. Model Dev., 2023,16(7):1961-1973. [27] 王堃,高超,王晨龙,等.基于CSGD的排放清单处理工具研究[J]. 环境科学研究, 2019,32:1090-1098. Wang K, Gao C, Wang C L, et al. Research on emission inventory processing tool based on CSGD Data [J]. Research of Environmental Sciences, 2019,32:1090-1098. [28] Boylan J W, Russell A G. PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models [J]. Atmospheric Environment, 2006,40(26):4946-4959. [29] Zhang H, Wang Y, Hu J, et al. Relationships between meteorological parameters and criteria air pollutants in three megacities in China [J]. Environmental Research, 2015,140:242-254. [30] Wang L, Zhang Y, Wang K, et al. Application of weather research and forecasting model with chemistry (WRF/Chem) over northern China: Sensitivity study comparative evaluation, and policy implications [J]. Atmospheric Environment, 2016,124:337-350. [31] Hu J, Chen J, Ying Q et al. One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system [J]. Atmospheric Chemistry and Physics, 2016,16(16):10333-10350. [32] Hu J, Li X, Huang L, et al. Ensemble prediction of air quality using the WRF/CMAQ model system for health effect studies in China [J]. Atmospheric Chemistry and Physics, 2017,17(21):13103-13118. [33] 陆克定,张远航,苏杭,等.珠江三角洲夏季臭氧区域污染及其控制因素分析[J]. 中国科学:化学, 2010,40:407-420. Lu K D, Zhang Y H, Su H, et al. Regional ozone pollution and key controlling factors of photochemical ozone production in Pearl River Delta during summer time [J]. Science China Chemistry, 2010,40: 407-420. [34] 杨显玉,易家俊,吕雅琼,等.成都市及周边地区严重臭氧污染过程成因分析[J]. 中国环境科学, 2020,40(5):2000-2009. Yang X Y, Yi J J, Lv Y Q, et al. Characteristics and formation mechanism of a severe O3 episode in Chengdu and surrounding areas. [J]. China Environmental Science, 2020,40(5):2000-2009. [35] Ren H H, Cheng Y, Wu F et al. Spatiotemporal characteristics of ozone and the formation sensitivity over the Fenwei Plain [J]. Science of the Total Environment, 2023,881:163369. [36] 于小红,杨爱琴,陈玲,等.山西夏季臭氧光化学生成敏感区分布和变化[J]. 环境科学, 2024,45(8):4432-4439. Yu X H, Yang A Q, Chen L, et al. Spatiotemporal distributions and variations in summertime ozone photochemical production regimes over Shanxi [J]. Environmental Science, 2024,45(8):4432-4439. [37] Ou J, Yuan Z, Zheng J, et al. Ambient ozone control in a photochemically active Region: Short term despiking or long-term attainment? [J]. Environmental Science & Technology, 2016,50(11): 5720-5728. [38] Yang X Y, Wu K, Lu Y, et al. Origin of regional springtime ozone episodes in the Sichuan Basin, China: Role of synoptic forcing and regional transport [J]. Environmental Pollution, 2021,278:116845.