Process on emergency treatment technology of cyanobacterial blooms in Lacustrine/reservoir water sources
CAI Qi-jia, MA Qian-li, GOU Ting, LIANG Rong-chang, CHEN Si-li, HUANG Da-wei, ZHAO Rui, FENG Yan-hui, YAO Ling-ai
State Key Laboratory of Water Environment Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment (Institute of Ecological and Environmental Emergency Research, Ministry of Ecology and Environment), Guangzhou 510530, China
Abstract:The tolerance to cyanobacterial blooms and the need for ecological safety vary spatially across different areas of lake and reservoir water sources (e.g., intake areas, lake/reservoir zones, bay areas), which requires more precise selection and application of emergency response technologies. Currently, there is a wide range of emergency response technologies available for cyanobacterial blooms, but selecting efficient and safe technologies that are tailored to the specific scenarios of lake and reservoir water sources presents a technical challenge for emergency responders. This study first details the theoretical foundations of current emergency response technologies for cyanobacterial blooms, focusing on three main aspects: rapid algae-water separation, environmental factor regulation, and physiological growth inhibition, providing a theoretical basis for technology application. Secondly, based on spatial heterogeneity, the study categorizes different treatment areas within lake and reservoir water sources: interception, skimming, filtration, and clear water dispatching for highly sensitive intake areas; aeration, pressurized algae control, ultrasonic, flotation, and magnetic separation technologies for lake/reservoir zones; and flocculation, modified clay, chemical oxidation, photocatalytic oxidation, allelopathic plants, and microbial algae control for bay areas. Finally, the study comprehensively compares the technical requirements, advantages, duration of effectiveness, and application costs of these technologies in different water areas, providing a reference for the selection and development of emergency response technologies for cyanobacterial blooms in lake and reservoir water sources.
[1] Michael L P, Ryan D B, Cal D B, et al. Reversal of a cyanobacterial bloom in response to early warnings [J]. PNAS, 2017,114:6. [2] Ho J C, Michalak A M, Pahlevan N. Widespread global increase in intense lake phytoplankton blooms since the 1980s [J]. Nature, 2019, 574(7780):667-670. [3] Merder J, Harris T, Zhao G, et al. Geographic redistribution of microcystin hotspots in response to climate warming [J]. Nature Water, 2023,1(10):844-854. [4] 施文卿,秦伯强.气候变化下湖库蓝藻水华发展趋势及防控对策 [J]. 水利学报, 2023,54(8):987-996. Shi W Q, Qin B Q. Development trends and control strategies of cyanobacterial blooms in lakes and reservoirs under climate change [J]. Shuili Xuebao, 2023,54(8):987-996. [5] Huang J, Zhang Y, George B A, et al. The magnitude and drivers of harmful algal blooms in China's lakes and reservoirs: A national-scale characterization [J]. Water Research, 2020,181:115902. [6] 生态环境部.2022年中国生态环境状况公报, 2023 [R]. Ministry of Ecology and Environment. China's ecological and environmental status bulletin 2022, 2023 [R]. [7] Jef H, Geoffrey A C, Hans W P, et al. Cyanobacterial blooms [J]. Nature Reviews Microbiology, 2018,16(8):471-483. [8] 刘健利.水源型水库水质研究进展与我国代表性水库现状 [J]. 净水技术, 2019,38(12):1-5. Liu J L. Research progress on water quality of water source reservoirs and current status of representative reservoirs in China [J]. Water Purification Technology, 2019,38(12):1-5,45. [9] 陈 昕,胡胜华,陈晓飞,等.蓝藻水华应急处置方法与技术研究进展 [J]. 环境科学与技术, 2023,45(5):108-115. Chen X, Hu S H, Chen X F, et al. Progress on methods and technologies for the emergency treatment of cyanobacterial blooms [J]. Environmental Science & Technology, 2023,46(5):108-116. [10] Mutoti M, Jabulani G, Afam I. Occurrence of cyanobacteria in water used for food production: A review [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2022,125. [11] Backovic D, Tokodi N. Blue revolution turning green? A global concern of cyanobacteria and cyanotoxins in freshwater aquaculture: A literature review [J]. Journal of Environmental Management, 2024, 360:121115. [12] Harris D, Reinl L, Azarderakhsh M, et al. What makes a cyanobacterial bloom disappear? A review of the abiotic and biotic cyanobacterial bloom loss factors [J]. Harmful Algae, 2024,133: 102599. [13] Balaji P, Wang Y, Su Y, et al. Methods to control harmful algal blooms: a review [J]. Environmental Chemistry Letters, 2022,20(5):3133- 3152. [14] Kibuye A F, Zamyadi A, Wert C E. A critical review on operation and performance of source water control strategies for cyanobacterial blooms: Part II-mechanical and biological control methods [J]. Harmful Algae, 2021,109:102119. [15] Ren B, Weitzel K A, Duan X, et al. A comprehensive review on algae removal and control by coagulation-based processes: mechanism, material, and application [J]. Separation and Purification Technology, 2022,293:121106. [16] Petra M V, Bas W I, Myriam B, et al. Artificial mixing to control cyanobacterial blooms: a review [J]. Aquatic Ecology, 2015,50(3): 423-441. [17] Ghernaout B, Ghernaout D, Saiba A. Algae and cyanotoxins removal by coagulation/flocculation: A review [J]. Desalination and Water Treatment, 2012,20(1-3):133-143. [18] Chen S W, Xu J C, Liu J, et al. Algae separation from urban landscape water using a high density microbubble layer enhanced by micro- flocculation [J]. Water Science & Technology, 2014,70(5):811-818. [19] Wang C B, Cai Q J, Li Y, et al. Simultaneous removal of cyanobacterial blooms and production of clean water by coupling flocculation with a rotary drum filter [J]. Environmental Science and Pollution Research, 2021:13664. [20] Cong H B, Sun F, Chen W J, et al. Study on the method and mechanism of pre-pressure coagulation and sedimentation for Microcystis removal from drinking-water sources [J]. Environmental Technology, 2018,39(4):433-449. [21] 孔繁翔,高 光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考 [J]. 生态学报, 2005,25(3):589-595. Kong F X, Gao G. Hypothesis on cyanobacteria bloom-forming mechanism in large shallow eutrophic lakes [J]. ACTA ECOLOGICA SIN ICA, 2005,25(3):589-595. [22] 陈雪初,孙扬才,曾晓文,等.低光照度对源水中铜绿微囊藻增殖的抑制作用 [J]. 中国环境科学, 2007,27(3):352-355. Chen X C, Sun Y C, Zeng X W, et al. The inhibition of low light intensity on the growth of Microcystis aeruginosa in raw water [J]. China Environmental Science, 2007,27(3):352-355. [23] 郭咏琪,孟 晗,邓代兰,等.气候变暖对微囊藻的生长、代谢及机制研究进展 [J]. 环境生态学, 2023,5(7):79-86. Guo Y Q, Meng H, Deng D L, et al. Research progress on effects of climate warming on the growth, metabolism and mechanism of Microcystis [J]. Environmental Ecology, 2023,5(7):79-86. [24] Lu J P, Su M, Su Y L, et al. MIB-derived odor management based upon hydraulic regulation in small drinking Water Researchervoirs: Principle and application [J]. Water Research, 2023,244:120485. [25] 芮 政,杨桂军,刘 玉,等.扰动方式对水华微囊藻(Microcystis flos-aquae)群体大小的影响 [J]. 湖泊科学, 2019,31(2):355-364. Rui Z, Yang G J, Liu Y, et al. Effects of disturbance modes on the size of Microcystis flos-aquae colonies [J]. Journal of Lake Sciences, 2019, 31(2):355-364. [26] 刘心愿,宋林旭,纪道斌,等.降雨对蓝藻水华消退影响及其机制分析 [J]. 环境科学, 2018,39(2):774-782. Liu X Y, Song L X, Ji D B, et al. Effect of the rainfall on extinction of cyanobacteria bloom and its mechanism analysis [J]. Environmental science, 2018,39(2):774-782. [27] 陈聿奇,崔玉洁,黄浩昇,等.分层异重流背景下降雨对三峡水库香溪河水华消退的影响 [J]. 湖泊科学, 2023,35(2):519-529. Chen Y Q, Cui Y J, Huang H, et al. Rainfall impact on the disappearance of algal blooms in Xiangxi River of Three Gorges Reservior under stratified density current [J]. Journal of Lake Sciences, 2023,35(2):519-529. [28] Pfeifer F. Distribution, formation and regulation of gas vesicles [J]. Nature Reviews Microbiology, 2012,10(10):705-15. [29] Sandrini G, Tann P R, Schuurmans J M, et al. Diel Variation in gene expression of the CO2-concentrating mechanism during a harmful cyanobacterial bloom [J]. Frontiers in Microbiology, 2016,7:551. [30] Maayke S, Jef H, Floris D J, et al. Adaptive divergence in pigment composition promotes phytoplankton biodiversity [J]. Nature, 2004, 432:104-107. [31] Qian H F, Li J, Sun L W, et al. Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription [J]. Aquatic Toxicology, 2009,94(1):56-61. [32] 金吉媛,黄馨雯,曹 杰,等.铜绿微囊藻杀藻剂的现状综述:性能及机理 [J]. 工业水处理, 2024,44(2):11-16. Jin J Y, Huang X W, Cao J, et al. Review on the current situation of algaecides for Microcystis aeruginosa: Performance and mechanisms [J]. Industrial Water Treatment, 2024,44(2):11-16. [33] Ou H S, Gao N Y, Deng Y, et al. Mechanistic studies of Microcystis aeruginosa inactivation and degradation by UV-C irradiation and chlorination with poly-synchronous analyses [J]. Desalination, 2011, 272(1-3):107-119. [34] 周 丽,付子轼,陈桂发,等.陆生植物化感抑制铜绿微囊藻作用效应及机制研究进展 [J]. 应用生态学报, 2018,29(5):1715-1724. Zhou L, Fu Z S, Chen G F, et al. Research advance in allelopathy effect and mechanism of terrestrial plants in inhibition of Microcystis aeruginosa [J]. Chinese Journal of Applied Ecology, 2018,29(5):1715-1724. [35] 刘 湘,徐 蕾,王纯波,等.枯草芽孢杆菌发酵液对拟柱孢藻的抑制效果及作用方式 [J]. 水生生物学报, 2023,47(12):1-10. Liu X, Xu L, Wang C B, et al. Inhibition effect and mechanism of bacillus subtilis frementation broth on Cylindrospermopsis Raciborskii [J]. Acta Hydrobiologica Sinica, 2023,47(12):1-10. [36] Zhou T R, Cao H S, Zheng J, et al. Suppression of water-bloom cyanobacterium Microcystis aeruginosa by algaecide hydrogen peroxide maximized through programmed cell death [J]. Journal of Hazardous Materials, 2020,393:122394. [37] Wang D, Xie L L, Zhu X B, et al. Study on the metabolites of DH-e, a Halomonas marine bacterium, against three toxic dinoflagellate species [J]. Water Science & Technology, 2018,78(7):1535-1544. [38] Box A, Sureda A, Terrados Je, et al. Antioxidant response and caulerpenyne production of the alien Caulerpa taxifolia (Vahl) epiphytized by the invasive algae Lophocladia lallemandii (Montagne) [J]. Journal of Experimental Marine Biology and Ecology, 2008,364 (1):24-28. [39] 濮培民,胡维平,逄 勇,等.净化湖泊饮用水源的物理-生态工程实验研究 [J]. 湖泊科学, 1997,9(2):159-167. Pu P M, Hu W P, Pang Y, et al. A physico-chemical engineering experiment for purification raw water quality in a lake [J]. Journal of Lake Sciences, 1997,9(2):159-167. [40] 秦伯强,胡维平,刘正文,等.太湖水源地水质净化的生态工程试验研究 [J]. 环境科学学报, 2007,27(1):5-12. Qin B Q, Hu W P, Liu Z W, et al. Ecological engineering experiment on water purification in drinking water source in Meiliang Bay Lake Taihu [J]. Acta Scientiae Circumstantiae, 2007,27(1):5-12. [41] 薛现光,方光宏,邹楚钧,等.大沙河水库拟柱孢藻昼夜垂直分布特征 [J]. 生态学杂志, 2020,39(7):2348-2355. Xue X G, Fang g h, Zou C J, et al. Diel vertical distribution patterns of Raphidiopsis raciborskii in Dashahe Reservoir [J]. Chinese Journal of Ecology, 2020,39(7):2348-2355. [42] 钱盘生,谢琤琤.太湖蓝藻AIO打捞技术及藻泥高值化工程应用 [J]. 工业用水与废水, 2023,54(3):57-61. Qian P S, Xie Z Z. Engineering application of AIO salvage technology for blue-green algae in Taihu lake and high-value utilization of algal mud [J]. Industrial water & wastewater, 2023,54(3):57-61. [43] 朱晓燕,吕锡武,朱光灿.蓝藻藻浆厌氧发酵技术研究现状及展望 [J]. 中国科技论文在线, 2009,4(5):362-366. Zhu X Y, Lv X W, Zhu G C. Current status and future prospect of anaerobic fermentation technology for blue algae [J]. Sciencepaper Online, 2009,4(5):362-366. [44] 韩 玉.膜技术在微藻采收中的应用 [J]. 净水技术, 2021,40(5):22-27. Han Y. Application of membrane technology in microalgae harvesting [J]. Water Purification Technology, 2021,40(5):22-27,130. [45] Shao, P H, Ken D, Thom M, et al. Algae-dewatering using rotary drum vacuum filters: Process modeling, simulation and techno- economics [J]. Chemical Engineering Journal, 2015,268:67-75. [46] Qu F S, Du X, Liu B, et al. Control of ultrafiltration membrane fouling caused by Microcystis cells with permanganate preoxidation: Significance of in situ formed manganese dioxide [J]. Chemical Engineering Journal, 2015,279:56-65. [47] Aramaki T, Watanabe M M., Nakajima M, et al. Bench-scale dehydration of a native microalgae culture by centrifugation, flocculation and filtration in Minamisoma city, Fukushima, Japan [J]. Bioresource Technology Reports, 2020,10:100414. [48] 蔡启佳,王纯波,杨甜甜,等.絮凝预处理对微囊藻机械过滤的影响 [J]. 环境科学与技术, 2019,42(5):13-19. Cai Q J, Wang C B, Yang T T, et al. Effect of pre-flocculation on the performance of mechanical filter in removal of Microcystis [J]. Environmental Science & Technology, 2019,42(5):13-19. [49] 李文朝,杨清心,潘继征,等.大型仿生式水面蓝藻清除设备 [P]. 2011: 中国. Li W C, Yang Q X, Pan J Z, et al. Large-scale biomimetic Cyanobacteria removal equipment for water surfaces [P]. 2011: China. [50] Wang C B, Cai Q J Feng B, et al. Improving the performance of shipboard rotary drum filters in the removal of cyanobacterial blooms by cationic polyacrylamide flocculation [J]. Separation and Purification Technology, 2019,215:660-669. [51] 吴晓甜,陶 益,周灿炜,等.陶瓷膜过滤收获微藻的效能与膜污染特征 [J]. 应用化工, 2017,46(6):1027-1032. Wu X T, Tao Y, Zhou C W, et al. The microalgae harvesting efficiency and fouling characterization with ceramic ultrafiltration membrane [J]. Applied Chemical Industry, 46(6):1027-1032. [52] Shekhar M, Shriwastav A, Bose P, et al. Microfiltration of algae: Impact of algal species, backwashing mode and duration of filtration cycle [J]. Algal Research, 2017,23:104-112. [53] Liu Y, Wang Y L, Hu S, et al. Quantitative evaluation of lake eutrophication responses under alternative water diversion scenarios: a water quality modeling based statistical analysis approach [J]. Science of The Total Environment, 2014,468-469:219-27. [54] 周 杰,任小龙,杨金艳,等.望虞河引江济太工程的水生态环境影响 [J]. 农业与生态环境, 2017,11:142-144. Zhou Jie, Ren Xiaolong, Yang Jinyan, et al. Impact of the Yangtze- to-Taihu Water Diversion Project on the aquatic ecological environment of Wangyu River [J]. Agriculture and Ecological Environment, 2017,11:142-144. [55] 黄廷林,朱 倩,邱晓鹏,等.扬水曝气技术对周村水库藻类的控制 [J]. 环境工程学报, 2017,11(4):2255-2260. Huang T L, Zhu Q, Qiu X P, et al. Algae control by water-lifting aerator in Zhoucun reservoir [J]. Chinese Journal of Environmental Engineering, 2017,11(4):2255-2260. [56] 翟振起,黄廷林,陈 凡.扬水曝气技术在调水型水库水质改善中的应用 [J]. 中国给水排水, 2022,38(8):31-37. Zhai Z Q, Huang T L, Chen F. Application of water-lifting aeration technology in water quality improvement of water diversion reservoir [J]. China Water & Wastewater, 2022,38(8):31-37. [57] 曹 晶,袁 静,赵 丽,等.湖库蓝藻水华控制技术发展、应用及展望 [J]. 环境工程技术学报, 2024,14(2):487-500. Cao J, Yuan J, Zhao L, et al. Development, application and prospect of cyanobacteria blooms control technology in lakes and reservoirs [J]. Journal of Environmental Engineering Technology, 2024,14(2):487- 500. [58] 杨翠平,霍 岩,刘 津,等.加压对微囊藻的影响及其生态风险探讨 [J]. 水生态学杂志, 2020,41(6):65-69. Yang C P, Huo Y, Liu J, et al. Effects of pressure on Microcystis and its ecological risk [J]. Journal of Hydroecology, 2020,41(6):65-69. [59] 储昭升,杨 波,金相灿,等.6株蓝藻伪空胞的临界破裂压力研究 [J]. 环境科学, 28(12):2695-2699. Chu Z S, Yang B, Jin X C, et al. Critical collapse pressure of gas vesicles in six strains of cyanobacteria [J]. Environmatl science, 28(12):2695-2699. [60] 成芃荣,陈旭清,朱晔宸,等.微能耗双罐并联加压控制蓝藻生长技术研究 [J]. 环境污染与防治, 2021,43(9):1108-1113. Chen F R, Chen X Q, Zhu Z C, et al. Research on the technology of controlling the growth of cyanobacteria under dual-tank parallel pressurization with microenergy consumption [J]. Environmental Pollution & Control, 2021,43(9):1108-1113. [61] 陈贺林,李 芸,储昭升,等.超声波控藻技术现状及研究进展 [J]. 环境工程技术学报, 2020,10(1):72-78. Chen H L, Li Y, Chu Z S, et al. Present situation and research progress of ultrasonic algae control technology [J]. Journal of Environmental Engineering Technology, 2020,10(1):72-78. [62] 陈贺林,叶碧碧,吴 越,等.超声波对滇池蓝藻伪空胞和群体沉降性能的影响 [J]. 环境工程学报, 2020,14(1):43-51. Chen H L, Ye B B, Wu Y, et al. Effects of ultrasonic treatment on gas vesicles and settleability of Cyanobacteria from Dianchi Lake [J]. Chinese Journal of Environmental Engineering, 2020,14(1):43-51. [63] 闫 莉.超声共振技术在水库藻类抑制中的应用初探 [J]. 人民珠江, 2015,4:88-90. Yan L. Preliminary Study on the Application of ultrasonic resonance technology in algae inhibition in reservoirs [J]. People's Pearl River, 2015,4:88-90. [64] 陈 矜,陈伟中.超声波对浮游蓝藻的作用 [J]. 2009年功率超声论文集, 2009:58-61. Chen J, Chen W Z. Effects of ultrasound on planktonic cyanobacteria [J]. Proceedings of the 2009 Power Ultrasound Conference, 2009: 58-61. [65] 储昭升,庞 燕,郑朔芳,等.超声波控藻及对水生生态安全的影响 [J]. 环境科学学报, 2008,28(7):1335-1339. Chu Z S, Pang Y, Zheng S F, et al. Algal control by ultrasonic radiation anf its risks to the aquatic environment [J]. Acta Scientiae Circumstantiae, 2008,28(7):1335-1339. [66] Zhou Y C, Huang H, Wang J, et al. Vaccination of the grouper, Epinephalus awoara, gainst vibriosis using the ultrasonic technique [J]. Aquaculture International, 2002,203:229-238. [67] Irem D Y, Malak S F, StxEphane B, et al. Bubble functionalization in flotation process improve microalgae harvesting [J]. Chemical Engineering Journal, 2023,452:139349. [68] Henderson R K, Parsons S A, Jefferson B. The Potential for Using Bubble Modification Chemicals in Dissolved Air Flotation for Algae Removal [J]. Separation Science and Technology, 2009,44(9):1923- 1940. [69] Zhang M, Wang Y F, Wang Y Q, et al. Efficient elimination and re-growth inhibition of harmful bloom-forming cyanobacteria using surface-functionalized microbubbles [J]. Water Research, 2019,161: 473-485. [70] Xu K W, Zou X T, Chang W J, et al. Microalgae harvesting technique using ballasted flotation: A review [J]. Separation and Purification Technology, 2021,276:119439. [71] Laamanen A C, Ross M G, Scott A J. Flotation harvesting of microalgae [J]. Renewable and Sustainable Energy Reviews, 2016,58: 75-86. [72] Wang Y L, Wang X L, Tian L P, et al. Removal effect and mechanism of amphiphilic chitosan modified microbubbles on Microcystis aeruginosa [J]. Journal of Water Process Engineering, 2022,46: 102585. [73] Féris L A, Gallina C W, Rodrigues R T, et al. Optimizing dissolved air flotation design and saturation [J]. Water Science and Technology, 2001,43(8):145-157. [74] Wang S K, Stiles A R, Guo C, et al. Harvesting microalgae by magnetic separation: A review [J]. Algal Research, 2015,9:178-185. [75] Bitton G, Fox J L, Strickland H G. Removal of algae from Florida lakes by magnetic filtration [J]. Applied Microbiology, 1975,30(6): 905-908. [76] Toh P Y, Yeap S P, Kong L P, et al. Magnetophoretic removal of microalgae from fishpond water: Feasibility of high gradient and low gradient magnetic separation [J]. Chemical Engineering Journal, 2012, 211-212:22-30. [77] 蔡 炎,陈 卫,刘 成.应对高藻水的新型BFC磁种强磁分离净水技术研究 [J]. 中国给水排水, 2017,33(23):44-46. Cai Y, Chen W, Liu C. Magnetic separation and water purification technology using novel magnetic seed for algae-rich water [J]. China Water & Wastewater, 2017,33(23):44-46. [78] Ge S J, Agbakpe M, Zhang, et al. Recovering magnetic Fe3O4-ZnO nanocomposites from algal biomass based on hydrophobicity shift under UV irradiation [J]. ACS Appl Mater Interfaces, 2015,7(21): 11677-82. [79] 陈雪初,孙扬才,张海春,等.遮光法控藻的中试研究 [J]. 环境科学学报, 2007,27(11):1830-1834. Chen X C, Sun Y C, Zhang H C, et al. Pilot scale alga control by light shading [J]. Acta Scientiae Circumstantiae, 2007,27(11):1830-1834. [80] 周起超,宋立荣,李 林.遮光对滇池春季藻类水华的影响 [J]. 环境科学与技术, 2015,38(9):53-59. Zhou Q C, Song L R, Li L. Effect of shading on the algal blooms during spring in Lake Dianchi, China [J]. Environmental Science & Technology, 2015,38(9):53-59. [81] Zhou Q C, Chen W, Shan K, et al. Influence of sunlight on the proliferation of cyanobacterial blooms and its potential applications in Lake Taihu, China [J]. Journal of Environmental Science (China), 2014,26(3):626-35. [82] Cai Q J, Song K Z, Tian C C, et al. Harvesting of Microcystis from waterbody by flocculation and filtration: the essential role of extracellular organic matters [J]. Journal of Water Process Engineering, 2021,41:102053. [83] Ghernaout D, Ghernaout B. Sweep flocculation as a second form of charge neutralisation—a review [J]. Desalination and Water Treatment, 2012,44(1-3):15-28. [84] Choi S K, Lee J Y, Kwon D Y, et al. Settling characteristics of problem algae in the water treatment process [J]. Water Science & Technology, 2006,53(7):113-9. [85] Pan R, Huang Y X, Ao J, et al. A molecular-level mechanism analysis of PFS coagulation behaviors: Differences in natural organic matter and algal organic matter [J]. Separation and Purification Technology, 2023,314. [86] Tsai M H, Liang W L, Hua L C, et al. Influence of Al/Fe-based coagulant dosing sequences on floc formation and settling behavior in algae-laden water [J]. Environmental Science: Water Researchearch & Technology, 2022,8(1):127-138. [87] Tian Chang, Zhao Yan-Xia, Dosage and pH dependence of coagulation with polytitanium salts for the treatment of Microcystis aeruginosa-laden and Microcystis wesenbergii-laden surface water: The influence of basicity [J]. Journal of Water Process Engineering, 2021,39. [88] Zhao Y X, Gao B Y, Cao B C, et al. Comparison of coagulation behavior and floc characteristics of titanium tetrachloride (TiCl4) and polyaluminum chloride (PACl) with surface water treatment [J]. Chemical Engineering Journal, 2011,166(2):544-550. [89] 刘丽冰,王 希,杨承刚,等.铝系混凝剂优势形态分析及其混凝特性 [J]. 环境科学学报, 2020,40(12):4249-4262. Liu L B, Wang X, Yang C G, et al. The analysis of dominant species in aluminous coagulants and their coagulation properties [J]. Acta Scientiae Circumstantiae, 2020,40(12):4249-4262. [90] Liu R P, Guo T T, Ma M, et al. Preferential binding between intracellular organic matters and Al13 polymer to enhance coagulation performance [J]. Journal of Environmental Sciences, 2019,76:1-11. [91] Kabdaşlı I, Arslan A I, Ölmez H T, et al. Electrocoagulation applications for industrial wastewaters: a critical review [J]. Environmental Technology Reviews, 2012,1(1):2-45. [92] Gao S S, Yang J X, Tian J Y, et al. Electro-coagulation-flotation process for algae removal [J]. Journal of Hazardous Materials, 2010, 177(1-3):336-43. [93] Zang X M, Zhang H Y, Liu Q L, et al. Harvesting of Microcystis flos-aquae using chitosan coagulation: Influence of proton-active functional groups originating from extracellular and intracellular organic matter [J]. Water Research, 2020,185:116272. [94] Jin Y, Pei H Y, Hu W R, et al. A promising application of chitosan quaternary ammonium salt to removal of Microcystisaeruginosa cells from drinking water [J]. Science of The Total Environment, 2017, 583:496-504. [95] Nie Y, Zhou Z, Zhao C, et al. A unique fungal bioflocculant isolated from food processing solid waste provides its insight into turbid water flocculation [J]. Journal of Environmental Chemical Engineering, 2023,11(6). [96] Abdul H S H, Lananan, Khatoon, et al. A study of coagulating protein of Moringa oleifera in microalgae bio-flocculation [J]. International Biodeterioration & Biodegradation, 2016,113:310-317. [97] Ma J Y, Xia W, Fu X, et al. Magnetic flocculation of algae-laden raw water and removal of extracellular organic matter by using composite flocculant of Fe3O4/cationic polyacrylamide [J]. Journal of Cleaner Production, 2020,248:119276. [98] Pan G, Miao X J, Bi L, et al. Modified local soil (MLS) technology for harmful algal bloom control, sediment remediation, and ecological restoration [J]. Water, 2019,11(6). [99] Wang H L, Yu Z M, Cao X H, et al. Fractal dimensions of flocs between clay particles and HAB organisms [J]. Chinese Journal of Oceanology and Limnology, 2011,29(3):656-663. [100] 邹 华,潘 纲,程子波.粘土原位除藻技术研究 [J]. 环境科学, 2009,30(2):407-410. Zou H, Pan G, Cheng Z B. Removal of algae using local soils and sediments [J]. Environmental science, 2009,30(2):407-410. [101] 邹楚钧,薛现光,朱德平,等.改性红土应急除藻及水质改善评价:水库现场应用 [J]. 环境科学与技术, 2020,43(3):206-213. Zou C J, Xue X G, Zhu D P, et al. Evaluation of modified red soil for algal bloom removal and water quality improvement—in situ in a reservoir [J]. Environmental Science & Technology, 2020,43(3):206- 213. [102] Shi W Q, Tan W Q, Wang L J, et al. Removal of Microcystisaeruginosa using cationic starch modified soils [J]. Water Research, 2016,97:19-25. [103] 曹西华,宋秀贤,俞志明.改性粘土去除赤潮生物及其对养殖生物的影响 [J]. 环境科学, 2004,25(5):148-152. Cao X H, Song X X, Yu Z M. Removal efficiency of red tide organisms by modified clay and its impacts on cultured organisms [J]. Environmnetal Science, 2004,25(5):148-152. [104] 田 娟,宋碧玉,林 燊,等.两种改性粘土去除群体状铜绿微囊藻的比较 [J]. 湖泊科学, 2009,21(5):669-674. Tian J, Song B Y, Lin C, et al. Removal of colonial Microcystis aeruginosa using two kinds of modified clays [J]. Journal of Lak Science, 2009,21(5):669-674. [105] 周 庆,杨小杰,韩士群.PAC改性粘土处理蓝藻水华对水环境的影响 [J]. 湖泊科学, 2017,29(2):343-350. Zhou Q, Yang X J, Han S Q. Impacts of PAC modified clay applied in the control of cyanobacteria bloom and left in water on water environment [J]. Journal of Lake Science, 2017,29(2):343-350. [106] Ma M, Liu R P, Liu H J, et al. Chlorination of Microcystis aeruginosa suspension: cell lysis, toxin release and degradation [J]. Journal of Hazardous Materials, 2012,217-218:279-85. [107] Xie P C, Chen Y Q, Ma J, et al. A mini review of preoxidation to improve coagulation [J]. Chemosphere, 2016,155:550-563. [108] Gu P, Wang Y T, Wu H Q, et al. Efficient control of cyanobacterial blooms with calcium peroxide: Threshold and mechanism [J]. Science of The Total Environment, 2023,882:163591. [109] 董文艺,杜 红.过氧化氢氧化法的原理及对有机物的去除 [J]. 中国农村水利水电, 2004,2:47-48. Dong W Y, Du H. Principles of the hydrogen peroxide oxidation method and its application in organic matter removal [J]. China Rural Water and Hydropower, 2004,2:47-48. [110] Faith A K, Arash Z, Eric C W. A critical review on operation and performance of source water control strategies for cyanobacterial blooms: Part I-chemical control methods [J]. Harmful Algae, 2021,109:102099. [111] 赵春禄,侯孝来.过氧化氢预氧化复合高岭土去除水中颤藻的研究 [J]. 供水技术, 2010,4(1):17-20. Zhao C L, Hou X L. Removal of oscillatoria tenuis by kaolin and PAC pre-oxidized with hydrogen peroxide [J]. Water Technology, 2010, 4(1):17-20. [112] 陈 超,范 帆,史小丽,等.化学氧化剂对水华蓝藻的控制研究 [J]. 中国环境科学, 2018,38(11):4307-4313. Chne C, Fan F, Shi X L, et al. Research on the control of chemical oxidants over water-blooming cyanobacteria [J]. Chian Environmental Science, 2018,38(11):4307-4313. [113] 王永平,郭 萧,谢 瑞,等.过氧化氢消除小型水体蓝藻水华的效果评价 [J]. 人民珠江, 2019,40(11). Wang Y P, Guo X, Xie R, et al. Evaluation of the effectiveness of hydrogen peroxide in eliminating cyanobacterial blooms in small water bodies [J]. People's Pearl River, 2019,40(11). [114] Hans C P M, Petra M V, Bart R, et al. Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide [J]. Water Research, 2012,46(5):1460-72. [115] Barroin G. Lake treatment with hydrogen peroxide, in hypertrophic ecosystems: S.I.L [R]. Workshop on hypertrophic ecosystems held at Växjö, September 10–14, 1979. Springer Netherlands: Dordrecht, 1980:287-294. [116] Zhen Y, Riley P B, Edna G F, et al. Hydrogen peroxide treatment promotes chlorophytes over toxic cyanobacteria in a hyper-eutrophic aquaculture pond [J]. Environmental Pollution, 2018,240:590-598. [117] 裴海燕,胡文容,丁国际,等.二氧化氯杀藻特性研究 [J]. 山东大学学报(工学版), 2004,34(5):104-108. Pei H Y, Hu W R, Ding G J, et al. The characters of algae-killing with chlorine dioxide [J]. Journal of Shandong University (Engineering Science), 2004,34(5):104-108. [118] Ma M, Liu R P, Liu H J, et al. Effects and mechanisms of pre- chlorination on Microcystisaeruginosa removal by alum coagulation: Significance of the released intracellular organic matter [J]. Separation and Purification Technology, 2012,86:19-25. [119] Dong F L, Li Q F, Li C, et al. Impacts of pre-oxidation on the formation of disinfection byproducts from algal organic matter in subsequent chlor(am)ination: A review [J]. Science of The Total Environment, 2021,754:141955. [120] 孙子为,高乃云,王奕岚,等.预氯化与高锰酸钾预氧化处理长江芜湖段水源水 [J]. 中国给水排水, 2015,31(11):118-123. Sun Z W, Gao N Y, Wang Y L, et al. Comparative Study on Prechlorination and Potassium Permanganate Preoxidation in Treatment of Source Water from Wuhu Section of Yangtze River [J]. China Water & Wastewater, 2015,31(11):118-123. [121] 樊 杰.高铁酸盐预处理湖泊水库水的研究进展 [J]. 工业安全与环保, 2005,31(10):25-27. Fan J. Research progress on pre-treatment of lake and reservoir water with ferrate [J]. Industrial Safety and Environmental Protection, 2005,31(10):25-27. [122] Brian B. Reaction of chlorine with organic polyelectrolytes in water treatment: A review [J]. Journal of Water Supply: Research and Technology—AQUA, 2005,54:531-544. [123] 张忠祥,宋浩然,张 伟,等.高铁酸钾预氧化强化混凝除藻效能及机理研究 [J]. 中国给水排水, 2019,35(15):31-36. Zhang Z X, Song H R, Zhang W, et al. Efficiency and mechanism of algae removal by potassium ferrate pre-oxidation enhanced coagulation [J]. China Water & Wastewater, 2019,35(15):31-36. [124] 张羽珩,李 波,宋高飞,等.过氧化钙对武汉东湖浮游植物群落及水环境的影响 [J]. 水生态学杂志, 2022,43(6):35-42. Zhang Y H, Li B, Song G F, et al. Effects of calcium peroxide on the phytoplankton community and water quality of Donghu Lake, Wuhan [J]. Journal of Hydroecology, 2022,43(6):35-42. [125] Harshavardhan M, Sethumathavan V, Saravanan R. Removal of harmful algae in natural water by semiconductor photocatalysis- A critical review [J]. Chemosphere, 2022,302:134827. [126] Liu I, Linda A L, Ben C, et al. Mechanistic and toxicity studies of the photocatalytic oxidation of microcystin-LR [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002,148:349-354. [127] Sun S Q, Tang Q X, Yu T P, et al. Fabrication of g-C(3)N(4)@Bi(2)MoO(6)@AgI floating sponge for photocatalytic inactivation of Microcystisaeruginosa under visible light [J]. Environmental Research, 2022,215(Pt 1):114216. [128] Jiang T, Wang B, Gao B, et al. Degradation of organic pollutants from water by biochar-assisted advanced oxidation processes: Mechanisms and applications [J]. Journal of Hazardous Materials, 2023,442: 130075. [129] Xu L, Guo C, Wang F, et al. A simple and rapid harvesting method for microalgae by in situ magnetic separation [J]. Bioresource Technology, 2011,102(21):10047-51. [130] Hu Y R, Guo C, Wang F, et al. Improvement of microalgae harvesting by magnetic nanocomposites coated with polyethylenimine [J]. Chemical Engineering Journal, 2014,242:341-347. [131] Prochazkova, Safarik I, Branyik T. Harvesting microalgae with microwave synthesized magnetic microparticles [J]. Bioresource Technology, 2013,130:472-7. [132] 黄凯文,汪小雄,高静思,等.陆生植物对淡水中藻类化感抑制和机理评述 [J]. 环境保护科学, 2022:1-13. Huang K W, Wang X X, Gao J S, et al. Allelopathic inhibition and mechanism of terrestrial plants on algae in fresh water [J]. Environmental Protection Science, 2022:1-13. [133] 高云霓,武 静,杨 惠,等.穗花狐尾藻种植水对铜绿微囊藻的影响 [J]. 水资源保护, 2021,37(6):162-167. Gao Y N, Wu J, Yang H, et al. Effects of cultivated water of Myriophyllum spicatum on Microcystis aeruginosa [J]. Water Resources Protection, 2021,37(6):162-167. [134] 董昆明,缪 莉,李 楠,等.广玉兰叶片浸提液中抑铜绿微囊藻化学成分分析 [J]. 环境化学, 2011,30(7):1253-1258. Dong K M, Miu L, Li N, et al. Analysis of the inhibitory components from extracts of Magnolla Grandiflora leaves agianst Microcystis aeruginosa [J]. Environmental Chemistry, 2011,30(7):1253-1258. [135] 邓继选,邹 华,庄 严.大麦秸秆抑藻物质的分离及其抑藻作用研究 [J]. 安全与环境学报, 2013,13(6):39-43. Deng J X, Zou H, Zhuang Y. On the isolation of ant-ialgal compounds from the wheat straw and the algae inhibiting effect [J]. Journal of Safety and Environment, 2013,13(6):39-43. [136] 杨小杰,韩士群,唐婉莹,等.凤眼莲对铜绿微囊藻生理、细胞结构及藻毒素释放与削减的影响 [J]. 江苏农业学报, 2016,32(2):376-382. Yang X J, Han S Q, Tang W Y, et al. Physiological characteristics and cell structure of Microcystis aeruginosa and microcystin release and reduction in Eichhornia crassipes-grown water [J]. Journal of Jiangsu Agricultural Science, 2016,32(2):376-382. [137] 朱小琴,刀国华,陶 益,等.典型植物化感物质对铜绿微囊藻生长的抑制效果评价 [J]. 中国环境科学, 2020,40(5):2230-22237. Zhu X Q, Dao G H, Tao Y, et al. Evaluation of growth inhibition of typical plant-derived allelochemicals on Microcystis aeruginosa [J]. China Environmental Science, 2020,40(5):2230-22237. [138] Peng P, Zhou L, Mihebai, et al. Unleashing the power of acetylacetone: Effective control of harmful cyanobacterial blooms with ecological safety [J]. Science of the Total Environment, 2023, 912:168644. [139] 熊露露,梅齐诚,张鑫洋,等.微生物抑藻及其抑藻机制研究进展 [J]. 山东化工, 2020,18:41-43. Xiong L L, Mei Q C, Zhang X Y, Liu T H, et al. Research progress of microbial algae inhibition activity and its mechanism [J]. Shandong Chemical Industry, 2020,18:41-43. [140] Sun R, Sun P F, Zhang J H, et al. Microorganisms-based methods for harmful algal blooms control: A review [J]. Bioresource Technology, 2018,248(Pt B):12-20. [141] Jia Y, Du J J, Fang H, et al. Inhibition of freshwater algal species by co-culture with two fungi [J]. Materials Science & Engineering C-Materials for Biological Applications, 2013,33(4):2451-2454. [142] Yang X R, Li X Y, Zhou Y Y, et al. Novel insights into the algicidal bacterium DH77-1killing the toxic dinoflagellate Alexandrium tamarense [J]. Science of The Total Environment, 2014,482-483: 116-124. [143] Jia Y, Han G M, Wang C Y, et al. The efficacy and mechanisms of fungal suppression of freshwater harmful algal bloom species [J]. Journal of Hazardous Materials, 2010,183(1-3):176-81. [144] Jiang J, Jin W B, Tu R J, et al. Harvesting of microalgae Chlorella pyrenoidosa by bio-flocculation with bacteria and filamentous fungi [J]. Waste and Biomass Valorization, 2020,12(1):145-154. [145] 宁 华,王琼瑶,程祖强.溶藻细菌应用于生物杀藻剂的研究进展 [J]. 净水技术, 2017,36(9):27-33. Ning H, Wang Q Y, Cheng Z Q. Research progress of algicidal bacteria in application of biological algicide [J]. Water purification technology, 2017,36(9):27-33. [146] Zakaria A M, Mohamed H, Saad A A. Growth inhibition of the cyanobacterium Microcystisaeruginosa and degradation of its microcystin toxins by the fungus Trichoderma citrinoviride [J]. Toxicon, 2014,86:51-58.