Bottom-up and zooplankton’s top-down effects on the phytoplankton communities in Yilong Lake
QIU Fei1, ZHANG Zhao-yang1, CHEN Li1, ZHU Jun-yu1, GONG Xue1, ZHENG Xin1, ZHANG Tao1, LI Tian-li2, ZHAO Shuai-ying1, CHEN Guang-jie1
1. Yunnan Key Laboratory of Plateau Geographical Processes and Environmental Change, Faculty of Geography, Yunnan Normal University, Kunming 650500, China; 2. University of Chinese Academy of Sciences, Wuhan 430072, China
Abstract:We conducted a seasonal survey on phytoplankton and environmental factors in Yilong Lake from summer, 2020 to spring, 2021 to uncover the seasonal pattern of phytoplankton community structure and biomass, and further identify the driving forces of bottom-up and zooplankton’s top-down effect in mediating phytoplankton variations through multivariate analysis. The results showed that the phytoplankton’s biomass in Yilong Lake ranged from 7.12mg/L to 66.07mg/L, with the highest value in September and the lowest value in December. The phytoplankton community was dominated by Cyanophyta, which contributed to 42.91% to 95.67% of total phytoplankton biomass. Raphidiopsis raciborskii, absolutely predominated during the investigation period (23.43%~84.30%), reflecting its strong competitive advantages. The ANOSIM and Kruskal-Wallis analyses indicated that there existed significant temporal fluctuation in phytoplankton community structure and biomass(P<0.05). The Spearman’s correlation analysis revealed that the biomass of phytoplankton, Cyanophyta and R. raciborskii were all positively related to total phosphorus(P<0.05), total nitrogen and water temperature and negatively related to transparency and ammonia nitrogen(P<0.05), but had no significant correlation with zooplankton biomass(P>0.05). The RDA results showed that total phosphorus, total nitrogen, silicate, water temperature and water depth were among the significant factors in driving phytoplankton community in Yilong Lake. The results of variation partitioning further revealed that the bottom-up effect (water temperature, nutrients and water depth) and top-down effect (zooplankton community) accounted for 20.30% and 0.20% of the total variance independently with a shared portion of 5.80%. Therefore, the bottom-up effect had a greater impact on variations in phytoplankton community than the top-down effect by zooplankton in Yilong Lake. This may be because zooplankton in Yilong Lake had small mean body length (ZB/ZA:0.0019 ±0.0018) and relatively low biomass (0.56±0.39mg/L), and thus resulting in the weak grazing pressure on algae (ZB/PB:0.0303±0.0271). Our results will provide scientific data for the ecological assessment and integrated watershed management of Yilong Lake.
[1] 刘建康.高级水生生物学:第一版 [M]. 北京:科学出版社, 1999. Liu J K. Advanced aquatic biology [M]. Beijing:Science Press, 1999. [2] Ptacnik R, Lepist L, Willén E, et al. Quantitative responses of lake phytoplankton to eutrophication in Northern Europe [J]. Aquatic Ecology, 2008,42(2):227-236. [3] 杨雅兰,尹成杰,公 莉,等.上、下行效应对洱海浮游植物优势功能群的影响 [J]. 湖泊科学, 2023,35(4):1194-1204. Yang Y L, Yin C J, Gong L, et al. Bottom up and top down effects on codetermination of the dominant phytoplankton functional groups in lake erhai [J]. J Lake Sci, 2023,35(4):1194-1204. [4] 刘雪梅,章光新.气候变化对湖泊蓝藻水华的影响研究综述 [J]. 水科学进展, 2022,33(2):316-326. Liu X M, Zhang G X. A review of studies on the impact of climate change on cyanobacteria blooms in lakes [J]. Advances in Water Science, 2022,33(2):316-326. [5] Tyler J B, Eric K M, Grace M W. Contribution of zooplankton nutrient recycling and effects on phytoplankton size structure in a hypereutrophic reservoir [J]. Journal of Plankton Research, 2022, 44(6):851-865. [6] Sommer U, Gliwicz Z M, Lampert W I, et al. The PEG-model of seasonal succession of planktonic events in fresh waters [J]. Archiv für Hydrobiologie, 1986,106(4):433-471. [7] 王 利.鱼类捕食和温度升高对浮游动物牧食浮游植物的影响 [D]. 武汉:中国科学院研究生院水生生物研究所, 2020. Wang L. Effects of fish predation and warm temperature on zooplankton grazing on phytoplankton [D]. Wuhan:Institute of Hydrobiology, Chinese Academy of Sciences, 2020. [8] Balayla D J, Lauridsen T L, Søndergaard M, et al. Winter fish kills and zooplankton in future scenarios of climate change [J]. Hydrobiologia, 2010,646:159-172. [9] Andrew D. Interactions of phytoplankton, zooplankton and planktonic bacteria in two contrastition [D]. Manchester: The University of Manchester, 2004. [10] 黎尚豪,俞敏娟,李光正,等.云南高原湖泊调查 [J]. 海洋与湖沼, 1963,5(2):87-114. Li S H, Yu M J, Li G Z, et al. Limnological survey of the lakes of yunnan plateau [J]. Oceanologia et Limnologia sinica, 1963,5(2):87-114. [11] 王忠泽.云南省异龙湖藻类植物及鱼产力研究 [J]. 水产学报, 1997, 21(1):94-97. Wang Z Z. A study on algal flora and catch in the yilonghu lake of yunnan province [J]. Journal of fisheries of China, 1997,21(1):94-97. [12] 张 民,于 洋,钱善勤,等.云贵高原湖泊夏季浮游植物组成及多样性 [J]. 湖泊科学, 2010,22(6):829-836. Zhang M, Yu Y, Qian S Q, et al. Phytoplankton community structure and biodiversity in summer yunnan-guizhou plateau lakes [J]. J Lake Sci, 2010,22(6):829-836. [13] 李 杰,陈 静,赵 磊.异龙湖藻类群落特征及环境响应关系 [J]. 环境科学与技术, 2014,37(120):58-61. Li J, Chen J, Zhao L. Phytoplankton population response of water environmental index in yilong lake [J]. Environmental Science & Technology, 2014,37(120):58-61. [14] 王振方,张 玮,杨 丽,等.异龙湖不同湖区浮游植物群落特征及其与环境因子的关系 [J]. 环境科学, 2019,40(5):2249-2257. Wang Z F, Zhang W, Yang L, et al. Characteristics of phytoplankton community and its relationship with environmental factors in different regions of yilong lake, yunnan province, china [J]. Environmental Science, 2019,40(5):2249-2257. [15] 张 涛,陈 丽,刘晓曦,等.云南中部和南部湖泊夏季浮游植物空间分布及其影响因子 [J]. 生态学杂志, 2020,39(10):3350-3362. Zhang T, Chen L, Liu X X, et al. Spatial pattern and influencing factors of phytoplankton in lakes of central and southern yunnan in summer [J]. Chinese Journal of Ecology, 2020,39(10):3350-3362. [16] Hu K, Chen G J, Irene G E, et al. Hydrological fluctuations modulate phototrophic responses to nutrient fertilization in a large and shallow lake of Southwest China [J]. Aquatic Sciences, 2019,81:37. [17] 刘 薇,宁 平,孙 鑫,等.异龙湖水质及水生生态系统演变趋势 [J]. 环境科学与技术, 2018,41(S1):281-287. Liu W, Ning P, Sun X, et al. The evolution tendency of water quality and aquatic system in lake yilong [J]. Environmental Science & Technology, 2018,41(S1):281-287. [18] 中国科学院南京地理与湖泊研究所.中国湖泊调查报告 [M]. 北京:科学出版社, 2019. Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences. Chinese lake survey report [M]. Beijing: Science Press, 2019. [19] 周 起,陈光杰,李 蕊,等.水体叶绿素a和硅藻群落时空分布及影响因子的对比分析—以云贵高原异龙湖为例 [J]. 湖泊科学, 2023, 35(6):1891-1904. Zhou Q, Chen G J, Li R, et al. A comparative study on spatio-temporal variations and environmental drivers of lake-water chlorophyll-a and diatom communities in lake yilong [J]. J. Lake Sci., 2023,35(6):1891- 1904. [20] 李圣洁.异龙湖水质时空演化特征及其改善模拟研究 [D]. 重庆:重庆交通大学, 2023. Li S J. Study on the water quality features and the water quality improvement scheme of the yilong lake [D]. Chongqing: Chongqing Jiaotong University, 2023. [21] 李浩杰,种 丹,范 硕,等.近三十年云南九大高原湖泊水面面积遥感变化监测 [J]. 长江流域资源与环境, 2016,25(S1):32-37. Li H J, Zhong D, Fan S, et al. Remote sensing monitoring of the nine plateau lakes’surface area in yunnan in recent thirty years [J]. Resources and Environment in the Yangtze Basin, 2016,25(S1):32-37. [22] 张 锐,谢海涛,段学新,等.异龙湖及主要入湖河流(含湿地)水质监测与评价 [J]. 环境科学导刊, 2022,41(1):85-86. Zhang R, Xie H T, Duan X X, et al. Water quality monitoring and assessment of the main rivers and wetlands in yilonghu lake [J]. Environmental Science Survey, 2022,41(1):85-86. [23] 中国致公党云南省委员会异龙湖专家组.致公党云南省委会“引智异龙湖”科学论坛综述 [J]. 中国发展, 2023,23(5):81-88. Expert groups on Yilong Lake program from yunnan provincial committee of china zhigong party. Review of scientific forum on “introducing wisdom to yilong lake” from yunnan provincial committee of china zhigong party [J]. China Development, 2023, 23(5):81-88. [24] 胡鸿钧,魏印心.中国淡水藻类—系统、分类及生态 [M]. 北京:科学出版社, 2006. Hu H J, Wei Y X. The freshwater algae of China:Systematics, taxonomy and ecology [M]. Beijing: Science Press, 2006. [25] Hillebrand H, Dürselen C, Kirschtel D, et al. Biovolume calculation for pelagic and benthic microalgae [J]. Journal of Phycology, 1999, 35:403-424. [26] 国家环境保护总局,水和废水监测分析方法:第四版 [M]. 北京:中国环境科学出版社, 2002:243-285. State environmental protection administration, "analysis and detection methods of water and wastewater" -version 4 [M]. Beiling: China Environmental Science Press, 2002:243-285. [27] 王家楫,等.中国淡水轮虫志 [M]. 北京:科学出版社, 1961. Wang J J, et al. Chinese freshwater rotifera [M]. Beijing: Science Press, 1961. [28] 章宗涉,黄祥飞.淡水浮游生物研究方法 [M]. 北京:科学出版社, 1991. Zhang Z S, Huang X F. Methods for study on freshwater plankton [M]. Beijing:Science Press, 1991. [29] 胡文渊,赵帅营,张 涛,等.砷污染下阳宗海浮游动物群落特征及其影响因素 [J]. 生态学杂志, 2021,40(10):3195-3204. Hu W Y, Zhao S Y, Zhang T, et al. Characteristics and driving factors of zooplankton community in arsenic-polluted yang-zong lake [J]. Chinese Journal of Ecology, 2021,40(10):3195-3204. [30] Jeppesen E, Peeter N, Thomas A, et al. Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD) [J]. Hydrobiologia, 2011,676:279-297. [31] Wu Z S, Cai Y J, Liu X, et al. Temporal and spatial variability of phytoplankton in lake poyang: the largest freshwater lake in China [J]. Journal of Great Lakes Research, 2013,39(3):476-483. [32] 张金屯.数量生态学 [M]. 北京:科学出版社, 2018:159-176. Zhang J T. Quantitative ecology [M]. Beijing:Science Press, 2018: 159-176. [33] Trombetta T, Vidussi F, Mas S, et al. Water temperature drives phytoplankton blooms in coastal waters [J]. PLoS One, 2019,14(4): e0214933. [34] Song L R, Jia Y L, Qin B Q, et al. Harmful cyanobacterial blooms: biological traits, mechanisms, risks, and control strategies [J]. Annual Review of Environment and Resources, 2023,48:123-147. [35] Paerl H, Huisman J. Blooms like it hot [J]. Science, 2008,320:57-58. [36] Dokulil M T, Mayer J. Population dynamics and photosynthetic rates of a Cylindrospermopsise Limnothrix association in a highly eutrophic urban lake, alte donau, vienna, austria [J]. Journal of Agronomy & Crop Science, 1996,83(1):179-195. [37] Jia N N, Wang Y L, Guan Y Y, et al. Occurrence of Raphidiopsis raciborskii blooms in cool waters: synergistic effects of nitrogen availability and ecotypes with adaptation to low temperature [J]. Environmental Pollution, 2021,270:116070. [38] Martin T D. Vegetative survival of Cylindrospermopsis raciborskii (cyanobacteria) at low temperature and low light [J]. Hydrobiologia, 2015,764(1):241-247. [39] Isvánovics V, Shafik H M, Présing M, et al. Growth and phosphate uptake kinetics of the cyanobacterium, Cylindrospermopsis raciborskii (cyanophyceae) in throughflow cultures [J]. Freshwater Biology, 2000, 43(2):257-275. [40] Wu Z X, Shi J Q, Li R H. Comparative studies on photosynthesis and phosphate metabolism of Cylindrospermopsis raciborskii with Microcystis aeruginosa and Aphanizomenon flosaquae [J]. Harmful algae, 2009,8(6):910-915. [41] Bonilla S, Aubriot L, Soares M C S, et al. What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? [J]. Fems Microbiology Ecology, 2011,79(3):594-607. [42] Kenesi G, Shafik H M, Kovács A W, et al. Effect of nitrogen forms on growth, cell composition and N2fixation of Cylindrospermopsis raciborskii in phosphorus-limited chemostat cultures [J]. Hydrobiologia, 2009,623:191-202. [43] Dolman A M, Rücker J, Pick F R, et al. Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus [J]. Plos One, 2012,7(6):e38757. [44] Chislock M F, Sharp K L, Wilson A E. Cylindrospermopsis raciborskii dominates under very low and high nitrogen-to-phosphorus ratios [J]. Water Research, 2014,49:207-214. [45] Branco C W C, Senna P A C. Factors influencing the development of Cylindrospermopsis raciborskii and Microcystis aeruginosa in the paranoá reservoir, brasília, brazil [J]. Algological Studies, 1994,75: 85-96. [46] Présing M, Herodek S, Vörös L, et al. Nitrogen fixation, ammonium and nitrate uptake during a bloom of Cylindrospermopsis raciborskii in lake balaton [J]. Archiv Für Hydrobiologie, 1996,136(4):553-562. [47] Saker M L, Neilan B A. Varied diazotrophies, morphologies, and toxicities of genetically similar isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from northern Australia [J]. Applied & Environmental Microbiology, 2001,67(4):1839-1845. [48] Thamatrakoln K, Hildebrand M. Silicon uptake in diatoms revisited, a model for saturable and nonsaturable uptake kinetics and the role of silicon transporters [J]. Plant Physiology, 2008,146(3):1397-1407. [49] 商晓梅,孙 军,信业宏,等.硅藻硅酸盐转运子(silicate transporter, SIT)研究进展 [J]. 海洋科学, 2020,44(5):149-155. Shang X M, Sun J, Xin Y H, et al. Progress and perspectives on silicate transporter (SIT) in diatoms [J]. Marine Sciences, 2020,44(5): 149-155. [50] 刘晓曦,陈 丽,蒋伊能,等.抚仙湖浮游植物群落时空变化特征及其与环境因子的关系 [J]. 湖泊科学, 2020,32(3):793-803. Liu X X, Chen L, Jiang Y N, et al. Spatiotemporal variation of phytoplankton communities and their relationship with environmental factors in lake fuxian [J]. J Lake Sci, 2020,32(3):793-803. [51] 王三秀,魏 莱,王 爽,等.上海水源地毗邻湖库浮游植物群落结构的季节变化及其影响因子 [J]. 湖泊科学, 2022,34(4):1127-1139. Wang S X, Wei L, Wang S, et al. Seasonal changes of phytoplankton community structure and its influencing factors in lakes and reservoirs adjacent to water sources in shanghai [J]. J Lake Sci, 2022,34(4): 1127-1139. [52] Carrillo P, Pizarro L C, Castillo P S. Analysis of phytoplankton- zooplankton relationships in a oligotrophic lake under natural and manipulated conditions [J]. Hydrobiologia, 1990,200(201):49-58. [53] Wong W H, Rabalais N N, Turner R E. Size-dependent top-down control on phytoplankton growth by microzooplankton in eutrophic lakes [J]. Hydrobiologia, 2016,763:97-108. [54] 郭匿春.浮游动物与藻类水华的控制 [D]. 武汉:中国科学院研究生院水生生物研究所, 2007. Guo N C. Zooplankton and its use in the control of algal blooms [D]. Wuhan: Institute of Hydrobiology, Chinese Academy of Sciences, 2007. [55] 江孝军,韩博平,林秋奇.水库鱼类放养密度对浮游动物群落结构的影响 [J]. 水生态学杂志, 2013,34(1):30-36. Jiang X J, Han B P, Lin Q Q. Effect of farming fish density on zooplankton community of reservoirs [J]. Journal of Hydroecology, 2013,34(1):30-36. [56] 倪达书.中国科学院水生生物研究所四年来的鱼病防治工作 [J]. 科学通报, 1954,11:43-46. Ni D S. Prevention and control of fish diseases in the institute of hydrobiology, chinese academy of sciences in the past four years [J]. Chinese Science Bullctin, 1954,11:43-46. [57] Chen J, Liu J R, Han S P, et al. Nontraditional biomanipulation: A powerful ecotechnology to combat cyanobacterial blooms in eutrophic freshwaters [J]. The Innovation Life, 2023,1(3):100038. [58] Xu J, Xie P. Studies on the food web structure of lake donghu using stable carbon and nitrogen isotope ratios [J]. Journal of Freshwater Ecology, 2004,19:645-650. [59] 赵 祺,张秀文,于 佳,等.安格庄水库浮游生物群落季节演替及鲢、鳙鱼产力评估 [J]. 水产科学, 2022,41(5):876-882. Zhao Q, Zhang X W, Yu J, et al. Seasonal succession of plankton community and evaluation of silver carp and bighead carp production in angezhuang reservoir [J]. Fisheries Science, 2022,41(5):876-882.