Numerical study on gas-liquid separation characteristics of cyclone dehydrator in the new OG system
LIU Zhe1, QIAN Fu-ping1, ZHANG Tian1, HU Jia2, XIA Yong-jun2, LU Jin-li1
1. School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; 2. Anhui Xinchuang Energy Saving and Environment Protection Science and Technology Corporation Limited, Ma'anshan 243071, China
Abstract:According to the internal flow characteristics of cyclone dehydrator, based on the Euler-Lagrangian method, the gas-liquid two-phase flow inside the cyclone dehydrator was numerically calculated and analyzed, the effects of droplet diameter, inlet mass quality of gas and turbulent diffusion on flow field distribution, dehydration efficiency, outlet mass quality of gas and outlet particle size distribution were studied. The results showed that, when mass flow rate was constant, the inlet and outlet pressure drop of cyclone dehydrator increased significantly with the inlet mass quality of gas. For droplets of single-diameter, without considering the effect of turbulent diffusion, the dehydration efficiency increasedas the inlet mass quality of gas increased. When considered the effect of turbulent diffusion, the trend was opposite for small droplets(0.1~1μm).The increase of continuous phase velocity promoted turbulence diffusion and made turbulence more turbulent, but the dehydration efficiency was higher than that without considering the effect of turbulent diffusion. Under the condition of mixed particle size, the dehydration efficiency and outlet mass quality of gas increasedas the inlet dryness increased. The calculation showed that the effect of turbulent diffusion promoted the separation of the mixed diameter droplets. As the inlet mass quality of gas increased, the peak value of the droplet mass fraction gradually moved toward small particle size, and the particle size distribution range gradually decreased.
刘哲, 钱付平, 张天, 胡笳, 夏勇军, 鲁进利. 新OG系统旋流脱水器气液分离特性数值研究[J]. 中国环境科学, 2019, 39(11): 4628-4637.
LIU Zhe, QIAN Fu-ping, ZHANG Tian, HU Jia, XIA Yong-jun, LU Jin-li. Numerical study on gas-liquid separation characteristics of cyclone dehydrator in the new OG system. CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(11): 4628-4637.
王堃,滑申冰,田贺忠,等.2011年中国钢铁行业典型有害重金属大气排放清单[J]. 中国环境科学, 2015,35(10):2934-2938. Wang K, Hua S B, Tian H Z, et al. Atmospheric emission inventory of typical heavy metals from iron and steel industry in China, 2011[J]. China Environment Science, 2015,35(10):2934-2938.
[2]
Feng C, Huang J B, Wang M, et al. Energy efficiency in China's iron and steel industry:Evidence and policy implications[J]. Journal of Cleaner Production, 2017,177:837-845.
[3]
徐向阳,任明,高俊莲.京津冀钢铁行业节能、SO2、NOx、PM2.5和水协同控制[J]. 中国环境科学, 2018,38(8):3160-3169. Xu X Y, Ren M, Gao J L. Co-control of energy, SO2, NOx, PM2.5, and water in the iron and steel industry in the Beijing-Tianjin-Hebei region[J]. China Environment Science, 2018,38(8):3160-3169.
[4]
刑金栋,刘海波,周航.提高100t转炉煤气回收量及热值的对策与实践[J]. 冶金能源, 2017,36(4):54-56. Xing J D, Liu H B, Zhou H, et al, Countermeasure and practice to increase recovery of gas in 100t converter[J]. Energy for Metallurgical Industry, 2017,36(4):54-56.
[5]
黄小萍,钱付平,王来勇,等.转炉一次除尘新OG系统高效喷淋塔喷嘴雾化特性的模拟[J]. 过程工程学报, 2018,18(3):461-468. Huang X P, Qian F P, Wang L Y, et al. Simulation of atomization characteristics in high efficient spray tower nozzle of new OG system of primary dedusting system for converter[J]. The Chinese Journal of Process Engineering, 2018,18(3):461-468.
[6]
邓志宏,彭绍南,漆良明.100t转炉一次除尘系统技术改进[J]. 冶金设备管理与维修, 2015,33(6):1-3. Deng Z H, Peng S N, Qi L M. Technical improvement of primary dedusting system in 100t converter[J]. Metallurgical Equipment Management and Maintenance, 2015,33(6):1-3.
[7]
Hreiz R, Lainé, Richard, Wu J, et al. On the effect of the nozzle design on the performances of gas-liquid cylindrical cyclone separators[J]. International Journal of Multiphase Flow, 2014,58:15-26.
[8]
Matsubayashi T, Katono K, Hayashi K, et al. Effects of swirler shape on swirling annular flow in a gas-liquid separator[J]. Nuclear Engineering and Design, 2012,249:63-70.
[9]
郭家相,李钧,罗万钢.旋流式气液分离器压力损失计算模型的数值模拟研究[J]. 工业安全与环保, 2017,43(3):65-67+106. Guo J X, Li J, Luo W G. Numerical simulation study of whirlwind gas-liquid separator pressure loss calculating model[J]. Industrial Safety and Environmental Protection, 2017,43(3):65-67+106.
[10]
Bi R S, Wang Z X, Li Y G, et al. Study on a New type of gas-liquid cyclone used in COIL[J]. Computer Aided Chemical Engineering, 2012,31:565-569.
[11]
Nagdewe S, Kwoon J K, Kim H D, et al. A parametric study for high-efficiency gas-liquid separator design[J]. Journal of Thermal Science, 2008,17(3):238-242.
[12]
Wen C, Cao X W, Yang Y. Swirling flow of natural gas in supersonic separators[J]. Chemical Engineering & Processing Process Intensification, 2011,50(7):644-649.
[13]
肖建发,张亚新,程源洪,等.离心式气液分离器分离性能的数值模拟[J]. 广东化工, 2014,41(23):19-21. Xiao J F, Zhang Y X, Cheng Y H, et al. Numerical simulation of separation performance of the centrifugal gas-liquid separator[J]. Guangdong Chemical Industry, 2014,41(23):19-21.
[14]
Huang A N, Ito K, Fukasawa T, et al. Effects of particle mass loading on the hydrodynamics and separation efficiency of a cyclone separator[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018,90:61-67.
[15]
Shukla S K, Shukla P, Ghosh P. The effect of modeling of velocity fluctuations on prediction of collection efficiency ofcyclone separators[J]. Applied Mathematical Modelling, 2013,37(8):5774-5789.
[16]
Azadi M, Mohebbi A. A CFD study of the effect of cyclone size on its performance parameters[J]. Journal of Hazardous Materials, 2010, 182(1-3):835-841.
[17]
Gong G, Yang Z, Zhu S. Numerical investigation of the effect of helix angle and leaf margin on the flow pattern and the performance of the axial flow cyclone separator[J]. Applied Mathematical Modelling, 2012,36(8):3916-3930.
[18]
Wasilewski M. Analysis of the effect of counter-cone location on cyclone separator efficiency[J]. Separation and Purification Technology, 2017,179:236-247.
[19]
Erdal F M. Local measurements and computational fluid dynamics simulations in a gas-liquid cylindrical cyclone separator[D]. Tulsa:The University of Tulsa, 2001.
[20]
Francia V, Martin L, Bayly A E, et al. An experimentalinvestigation of the swirling flow in a tall-form counter current spray dryer[J]. Experimental Thermal and Fluid Science, 2015,65:52-64.
[21]
Dobeim M A, Gaward A F A, Mahran G M A, et al. Numerical simulation of particulate-flow in spiral separators:Part I. Low solids concentration (0.3% & 3% solids)[J]. Applied Mathematical Modelling, 2013,37(1/2):198-215.
[22]
Orszag S A, Yakhot V, Flannery W S, et al. Renormalization group modeling and turbulence simulations[C]. International Conference on Near-Wall Turbulent Flows, 1993:1031-1046.
[23]
朱红钧,林元华,谢龙汉. Fluent12流体分析及工程仿真[M]. 北京:清华大学出版社, 2011. Zhu H J, Lin Y H, Xie L H. Fluid analysis and engineering simulation of Fluent 12[M]. Beijing:Tsinghua University Press.
[24]
蔡新剑,袁竹林.除雾器中细颗粒物湍流扩散模型研究[J]. 中南大学学报(自然科学版), 2018,49(2):290-299. Cai X J, Yuan Z L. Research on the turbulent particle dispersion model in baffle demisters[J]. Journal of Central South University (Science and Technology), 2018,49(2):290-299.
[25]
李文静.天然气旋流气液分离器的数值模拟[D]. 北京:中国石油大学, 2009. Li W J. Numerical simulation of natural gas swirling gas-liquid separator[D]. Beijing:China University of Petroleum, 2009.